提交 1e9fd407 编写于 作者: S sneaxiy

combine op files

test=develop
上级 b26e9bd2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/cross_entropy2_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/operators/cross_entropy_op_base.h"
namespace paddle {
namespace operators {
class CrossEntropyOp2 : public CrossEntropyOpBase {
public:
using CrossEntropyOpBase::CrossEntropyOpBase;
void InferShape(framework::InferShapeContext* ctx) const override {
CrossEntropyOpBase::InferShape(ctx);
PADDLE_ENFORCE(ctx->HasOutput("XShape"),
"Output(XShape) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto x_dims_vec = framework::vectorize(x_dims);
x_dims_vec.push_back(0);
ctx->SetOutputDim("XShape", framework::make_ddim(x_dims_vec));
ctx->ShareLoD("X", /*->*/ "XShape");
}
protected:
bool IsSoftLabel(framework::InferShapeContext* ctx) const override {
return false;
}
};
class CrossEntropyGradientOp2 : public CrossEntropyGradientOpBase {
public:
using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
protected:
virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
auto x_shape = ctx->GetInputDim("XShape");
return framework::DDim(x_shape.Get(), x_shape.size() - 1);
}
virtual const char* VarNameWithXLoD() const { return "XShape"; }
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
return false;
}
};
class CrossEntropyOpMaker2 : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), a tensor whose last dimension "
"size is equal to the number of classes. This input is a "
"probability computed by the previous operator, which is almost "
"always the result of a softmax operator.");
AddInput(
"Label",
"(Tensor), the tensor which represents the ground truth. It has the "
"same shape with 'X' except the last dimension. One hot Tensor.");
AddOutput("Y",
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss.");
AddOutput("XShape", "Temporaily variable to save shape and LoD of X.");
AddAttr<int>("ignore_index",
"(int, default -100), Specifies a target value that is"
"ignored and does not contribute to the input gradient."
"Only valid if soft_label is set to False")
.SetDefault(-100);
AddComment(R"DOC(
Hard-label CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
Only support hard label.
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.
)DOC");
}
};
class CrossEntropyGradOpMaker2 : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("cross_entropy_grad2");
op->SetInput("Label", Input("Label"));
op->SetInput("Y", Output("Y"));
op->SetInput("XShape", Output("XShape"));
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CPUCtx = paddle::platform::CPUDeviceContext;
REGISTER_OPERATOR(cross_entropy2, ops::CrossEntropyOp2,
ops::CrossEntropyOpMaker2, ops::CrossEntropyOpInferVarType,
ops::CrossEntropyGradOpMaker2);
REGISTER_OPERATOR(cross_entropy_grad2, ops::CrossEntropyGradientOp2);
REGISTER_OP_CPU_KERNEL(cross_entropy2,
ops::CrossEntropyOpKernel2<CPUCtx, float>,
ops::CrossEntropyOpKernel2<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad2,
ops::CrossEntropyGradientOpKernel2<CPUCtx, float>,
ops::CrossEntropyGradientOpKernel2<CPUCtx, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/cross_entropy2_op.h"
#include "paddle/fluid/platform/float16.h"
namespace plat = paddle::platform;
namespace ops = paddle::operators;
using CUDACtx = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(cross_entropy2,
ops::CrossEntropyOpKernel2<CUDACtx, float>,
ops::CrossEntropyOpKernel2<CUDACtx, double>,
ops::CrossEntropyOpKernel2<CUDACtx, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
cross_entropy_grad2, ops::CrossEntropyGradientOpKernel2<CUDACtx, float>,
ops::CrossEntropyGradientOpKernel2<CUDACtx, double>,
ops::CrossEntropyGradientOpKernel2<CUDACtx, plat::float16>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cmath>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
struct CrossEntropyBackwardFunctor {
CrossEntropyBackwardFunctor(T *dx, const T *y, const T *dy,
const int64_t *label, int64_t ignore_index,
int64_t feature_size)
: dx_(dx),
y_(y),
dy_(dy),
label_(label),
ignore_index_(ignore_index),
feature_size_(feature_size) {}
HOSTDEVICE void operator()(int64_t idx) const {
auto row_idx = idx / feature_size_;
auto col_idx = idx % feature_size_;
auto label = label_[row_idx];
if (label == col_idx && label != ignore_index_) {
dx_[idx] = -dy_[row_idx] * real_exp(y_[row_idx]);
} else {
dx_[idx] = 0;
}
}
T *dx_;
const T *y_;
const T *dy_;
const int64_t *label_;
int64_t ignore_index_;
int64_t feature_size_;
};
template <typename DeviceContext, typename T>
class CrossEntropyOpKernel2 : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x_original = ctx.Input<Tensor>("X");
int rank = x_original->dims().size();
auto x = framework::ReshapeToMatrix(*x_original, rank - 1);
auto label =
framework::ReshapeToMatrix(*ctx.Input<Tensor>("Label"), rank - 1);
auto *y = ctx.Output<Tensor>("Y");
y->mutable_data<T>(ctx.GetPlace());
auto ignore_index = ctx.Attr<int>("ignore_index");
math::CrossEntropyFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), y, &x, &label, false,
ignore_index);
}
};
template <typename DeviceContext, typename T>
class CrossEntropyGradientOpKernel2 : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y = ctx.Input<Tensor>("Y");
auto *dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto *label = ctx.Input<Tensor>("Label");
auto *p_dx = dx->mutable_data<T>(ctx.GetPlace());
auto *p_y = y->data<T>();
auto *p_dy = dy->data<T>();
auto *p_label = label->data<int64_t>();
int64_t ignore_index = ctx.Attr<int>("ignore_index");
int rank = dx->dims().size();
int64_t feature_size = dx->dims()[rank - 1];
int64_t batch_size = framework::product(dx->dims()) / feature_size;
platform::ForRange<DeviceContext> for_range(
ctx.template device_context<DeviceContext>(),
batch_size * feature_size);
for_range(CrossEntropyBackwardFunctor<T>(p_dx, p_y, p_dy, p_label,
ignore_index, feature_size));
}
};
} // namespace operators
} // namespace paddle
...@@ -14,11 +14,154 @@ limitations under the License. */ ...@@ -14,11 +14,154 @@ limitations under the License. */
#include "paddle/fluid/operators/cross_entropy_op.h" #include "paddle/fluid/operators/cross_entropy_op.h"
#include <string> #include <string>
#include "paddle/fluid/operators/cross_entropy_op_base.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class CrossEntropyOpBase : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label");
int rank = x_dims.size();
PADDLE_ENFORCE_EQ(rank, label_dims.size(),
"Input(X) and Input(Label) shall have the same rank.");
bool check = true;
if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
framework::product(label_dims) <= 0)) {
check = false;
}
if (check) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension.");
}
if (IsSoftLabel(ctx)) {
if (check) {
PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
"If Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal.");
}
} else {
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
"If Attr(softLabel) == false, the last dimension of "
"Input(Label) should be 1.");
}
auto y_dims = x_dims;
y_dims[rank - 1] = 1;
ctx->SetOutputDim("Y", y_dims);
ctx->ShareLoD("X", /*->*/ "Y");
}
protected:
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
ctx.device_context());
}
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
return ctx->Attrs().Get<bool>("soft_label");
}
};
class CrossEntropyGradientOpBase : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
"Input(Y@GRAD) shoudl be not null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Output(X@GRAD) should be not null.");
auto x_dims = GetXDim(ctx);
auto label_dims = ctx->GetInputDim("Label");
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
int rank = x_dims.size();
PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
"Input(Y@Grad) and Input(X) should have the same rank.");
PADDLE_ENFORCE_EQ(label_dims.size(), rank,
"Input(Label) and Input(X) should have the same rank.");
bool check = true;
if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
framework::product(label_dims) <= 0)) {
check = false;
}
if (check) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"The Input(X) and Input(Label) should have the same "
"shape except the last dimension.");
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(dy_dims, 0, rank - 1),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension.");
}
if (IsSoftLabel(ctx)) {
if (check) {
PADDLE_ENFORCE_EQ(
x_dims[rank - 1], label_dims[rank - 1],
"When Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal.");
}
} else {
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
"When Attr(soft_label) == false, the last dimension of "
"Input(Label) should be 1.");
}
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
"The last dimension of Input(Y@Grad) should be 1.");
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD(VarNameWithXLoD(), framework::GradVarName("X"));
}
protected:
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
ctx.Input<Tensor>(framework::GradVarName("Y"))->type(),
ctx.device_context());
}
virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
return ctx->GetInputDim("X");
}
virtual const char* VarNameWithXLoD() const { return "X"; }
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
return ctx->Attrs().Get<bool>("soft_label");
}
};
class CrossEntropyOpInferVarType
: public framework::PassInDtypeAndVarTypeToOutput {
protected:
std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
const override {
return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
}
};
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
...@@ -87,12 +230,110 @@ class CrossEntropyGradientOp : public CrossEntropyGradientOpBase { ...@@ -87,12 +230,110 @@ class CrossEntropyGradientOp : public CrossEntropyGradientOpBase {
public: public:
using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase; using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
CrossEntropyGradientOpBase::InferShape(ctx); CrossEntropyGradientOpBase::InferShape(ctx);
} }
}; };
class CrossEntropyOp2 : public CrossEntropyOpBase {
public:
using CrossEntropyOpBase::CrossEntropyOpBase;
void InferShape(framework::InferShapeContext* ctx) const override {
CrossEntropyOpBase::InferShape(ctx);
PADDLE_ENFORCE(ctx->HasOutput("XShape"),
"Output(XShape) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto x_dims_vec = framework::vectorize(x_dims);
x_dims_vec.push_back(0);
ctx->SetOutputDim("XShape", framework::make_ddim(x_dims_vec));
ctx->ShareLoD("X", /*->*/ "XShape");
}
protected:
bool IsSoftLabel(framework::InferShapeContext* ctx) const override {
return false;
}
};
class CrossEntropyGradientOp2 : public CrossEntropyGradientOpBase {
public:
using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
protected:
virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
auto x_shape = ctx->GetInputDim("XShape");
return framework::DDim(x_shape.Get(), x_shape.size() - 1);
}
virtual const char* VarNameWithXLoD() const { return "XShape"; }
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
return false;
}
};
class CrossEntropyOpMaker2 : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), a tensor whose last dimension "
"size is equal to the number of classes. This input is a "
"probability computed by the previous operator, which is almost "
"always the result of a softmax operator.");
AddInput(
"Label",
"(Tensor), the tensor which represents the ground truth. It has the "
"same shape with 'X' except the last dimension. One hot Tensor.");
AddOutput("Y",
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss.");
AddOutput("XShape", "Temporaily variable to save shape and LoD of X.");
AddAttr<int>("ignore_index",
"(int, default -100), Specifies a target value that is"
"ignored and does not contribute to the input gradient."
"Only valid if soft_label is set to False")
.SetDefault(-100);
AddComment(R"DOC(
Hard-label CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
Only support hard label.
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.
)DOC");
}
};
class CrossEntropyGradOpDescMaker2 : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("cross_entropy_grad2");
op->SetInput("Label", Input("Label"));
op->SetInput("Y", Output("Y"));
op->SetInput("XShape", Output("XShape"));
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetAttrMap(Attrs());
return op;
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -108,3 +349,14 @@ REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>, ...@@ -108,3 +349,14 @@ REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>,
REGISTER_OP_CPU_KERNEL(cross_entropy_grad, REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
ops::CrossEntropyGradientOpKernel<CPUCtx, float>, ops::CrossEntropyGradientOpKernel<CPUCtx, float>,
ops::CrossEntropyGradientOpKernel<CPUCtx, double>); ops::CrossEntropyGradientOpKernel<CPUCtx, double>);
REGISTER_OPERATOR(cross_entropy2, ops::CrossEntropyOp2,
ops::CrossEntropyOpMaker2, ops::CrossEntropyOpInferVarType,
ops::CrossEntropyGradOpDescMaker2);
REGISTER_OPERATOR(cross_entropy_grad2, ops::CrossEntropyGradientOp2);
REGISTER_OP_CPU_KERNEL(cross_entropy2,
ops::CrossEntropyOpKernel2<CPUCtx, float>,
ops::CrossEntropyOpKernel2<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad2,
ops::CrossEntropyGradientOpKernel2<CPUCtx, float>,
ops::CrossEntropyGradientOpKernel2<CPUCtx, double>);
...@@ -27,3 +27,13 @@ REGISTER_OP_CUDA_KERNEL( ...@@ -27,3 +27,13 @@ REGISTER_OP_CUDA_KERNEL(
cross_entropy_grad, ops::CrossEntropyGradientOpKernel<CUDACtx, float>, cross_entropy_grad, ops::CrossEntropyGradientOpKernel<CUDACtx, float>,
ops::CrossEntropyGradientOpKernel<CUDACtx, double>, ops::CrossEntropyGradientOpKernel<CUDACtx, double>,
ops::CrossEntropyGradientOpKernel<CUDACtx, plat::float16>); ops::CrossEntropyGradientOpKernel<CUDACtx, plat::float16>);
REGISTER_OP_CUDA_KERNEL(cross_entropy2,
ops::CrossEntropyOpKernel2<CUDACtx, float>,
ops::CrossEntropyOpKernel2<CUDACtx, double>,
ops::CrossEntropyOpKernel2<CUDACtx, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
cross_entropy_grad2, ops::CrossEntropyGradientOpKernel2<CUDACtx, float>,
ops::CrossEntropyGradientOpKernel2<CUDACtx, double>,
ops::CrossEntropyGradientOpKernel2<CUDACtx, plat::float16>);
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math.h"
#include "paddle/fluid/operators/math/cross_entropy.h" #include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h" #include "paddle/fluid/platform/for_range.h"
...@@ -137,5 +138,85 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> { ...@@ -137,5 +138,85 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
} }
}; };
template <typename T>
struct HardLabelCrossEntropyBackwardFunctor {
HardLabelCrossEntropyBackwardFunctor(T* dx, const T* y, const T* dy,
const int64_t* label,
int64_t ignore_index,
int64_t feature_size)
: dx_(dx),
y_(y),
dy_(dy),
label_(label),
ignore_index_(ignore_index),
feature_size_(feature_size) {}
HOSTDEVICE void operator()(int64_t idx) const {
auto row_idx = idx / feature_size_;
auto col_idx = idx % feature_size_;
auto label = label_[row_idx];
if (label == col_idx && label != ignore_index_) {
dx_[idx] = -dy_[row_idx] * real_exp(y_[row_idx]);
} else {
dx_[idx] = 0;
}
}
T* dx_;
const T* y_;
const T* dy_;
const int64_t* label_;
int64_t ignore_index_;
int64_t feature_size_;
};
template <typename DeviceContext, typename T>
class CrossEntropyOpKernel2 : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x_original = ctx.Input<Tensor>("X");
int rank = x_original->dims().size();
auto x = framework::ReshapeToMatrix(*x_original, rank - 1);
auto label =
framework::ReshapeToMatrix(*ctx.Input<Tensor>("Label"), rank - 1);
auto* y = ctx.Output<Tensor>("Y");
y->mutable_data<T>(ctx.GetPlace());
auto ignore_index = ctx.Attr<int>("ignore_index");
math::CrossEntropyFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), y, &x, &label, false,
ignore_index);
}
};
template <typename DeviceContext, typename T>
class CrossEntropyGradientOpKernel2 : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* y = ctx.Input<Tensor>("Y");
auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto* label = ctx.Input<Tensor>("Label");
auto* p_dx = dx->mutable_data<T>(ctx.GetPlace());
auto* p_y = y->data<T>();
auto* p_dy = dy->data<T>();
auto* p_label = label->data<int64_t>();
int64_t ignore_index = ctx.Attr<int>("ignore_index");
int rank = dx->dims().size();
int64_t feature_size = dx->dims()[rank - 1];
int64_t batch_size = framework::product(dx->dims()) / feature_size;
platform::ForRange<DeviceContext> for_range(
ctx.template device_context<DeviceContext>(),
batch_size * feature_size);
for_range(HardLabelCrossEntropyBackwardFunctor<T>(
p_dx, p_y, p_dy, p_label, ignore_index, feature_size));
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
class CrossEntropyOpBase : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label");
int rank = x_dims.size();
PADDLE_ENFORCE_EQ(rank, label_dims.size(),
"Input(X) and Input(Label) shall have the same rank.");
bool check = true;
if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
framework::product(label_dims) <= 0)) {
check = false;
}
if (check) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension.");
}
if (IsSoftLabel(ctx)) {
if (check) {
PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
"If Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal.");
}
} else {
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
"If Attr(softLabel) == false, the last dimension of "
"Input(Label) should be 1.");
}
auto y_dims = x_dims;
y_dims[rank - 1] = 1;
ctx->SetOutputDim("Y", y_dims);
ctx->ShareLoD("X", /*->*/ "Y");
}
protected:
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
ctx.device_context());
}
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
return ctx->Attrs().Get<bool>("soft_label");
}
};
class CrossEntropyOpInferVarType
: public framework::PassInDtypeAndVarTypeToOutput {
protected:
std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
const override {
return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
}
};
class CrossEntropyGradientOpBase : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
"Input(Y@GRAD) shoudl be not null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Output(X@GRAD) should be not null.");
auto x_dims = GetXDim(ctx);
auto label_dims = ctx->GetInputDim("Label");
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
int rank = x_dims.size();
PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
"Input(Y@Grad) and Input(X) should have the same rank.");
PADDLE_ENFORCE_EQ(label_dims.size(), rank,
"Input(Label) and Input(X) should have the same rank.");
bool check = true;
if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
framework::product(label_dims) <= 0)) {
check = false;
}
if (check) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"The Input(X) and Input(Label) should have the same "
"shape except the last dimension.");
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(dy_dims, 0, rank - 1),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension.");
}
if (IsSoftLabel(ctx)) {
if (check) {
PADDLE_ENFORCE_EQ(
x_dims[rank - 1], label_dims[rank - 1],
"When Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal.");
}
} else {
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
"When Attr(soft_label) == false, the last dimension of "
"Input(Label) should be 1.");
}
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
"The last dimension of Input(Y@Grad) should be 1.");
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD(VarNameWithXLoD(), framework::GradVarName("X"));
}
protected:
// Explicitly set that the data type of computation kernel of cross_entropy
// is determined by its input "X".
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
ctx.Input<Tensor>(framework::GradVarName("Y"))->type(),
ctx.device_context());
}
virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
return ctx->GetInputDim("X");
}
virtual const char* VarNameWithXLoD() const { return "X"; }
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
return ctx->Attrs().Get<bool>("soft_label");
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册