Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1dceb99e
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1dceb99e
编写于
2月 11, 2018
作者:
Y
Yuan Gao
提交者:
qingqing01
2月 11, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add detection output python api (#8389)
上级
30408e4c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
172 addition
and
0 deletion
+172
-0
python/paddle/v2/fluid/layers/__init__.py
python/paddle/v2/fluid/layers/__init__.py
+3
-0
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+116
-0
python/paddle/v2/fluid/tests/test_detection.py
python/paddle/v2/fluid/tests/test_detection.py
+53
-0
未找到文件。
python/paddle/v2/fluid/layers/__init__.py
浏览文件 @
1dceb99e
...
...
@@ -16,6 +16,8 @@ import ops
from
ops
import
*
import
nn
from
nn
import
*
import
detection
from
detection
import
*
import
io
from
io
import
*
import
tensor
...
...
@@ -28,6 +30,7 @@ import math_op_patch
from
math_op_patch
import
*
__all__
=
[]
__all__
+=
detection
.
__all__
__all__
+=
nn
.
__all__
__all__
+=
io
.
__all__
__all__
+=
tensor
.
__all__
...
...
python/paddle/v2/fluid/layers/detection.py
0 → 100644
浏览文件 @
1dceb99e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""
from
..layer_helper
import
LayerHelper
__all__
=
[
'detection_output'
,
]
def
detection_output
(
scores
,
loc
,
prior_box
,
prior_box_var
,
background_label
=
0
,
nms_threshold
=
0.3
,
nms_top_k
=
400
,
keep_top_k
=
200
,
score_threshold
=
0.01
,
nms_eta
=
1.0
):
"""
**Detection Output Layer**
This layer applies the NMS to the output of network and computes the
predict bounding box location. The output's shape of this layer could
be zero if there is no valid bounding box.
Args:
scores(Variable): A 3-D Tensor with shape [N, C, M] represents the
predicted confidence predictions. N is the batch size, C is the
class number, M is number of bounding boxes. For each category
there are total M scores which corresponding M bounding boxes.
loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
predicted locations of M bounding bboxes. N is the batch size,
and each bounding box has four coordinate values and the layout
is [xmin, ymin, xmax, ymax].
prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
each box is represented as [xmin, ymin, xmax, ymax],
[xmin, ymin] is the left top coordinate of the anchor box,
if the input is image feature map, they are close to the origin
of the coordinate system. [xmax, ymax] is the right bottom
coordinate of the anchor box.
prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
of variance.
background_label(float): The index of background label,
the background label will be ignored. If set to -1, then all
categories will be considered.
nms_threshold(float): The threshold to be used in NMS.
nms_top_k(int): Maximum number of detections to be kept according
to the confidences aftern the filtering detections based on
score_threshold.
keep_top_k(int): Number of total bboxes to be kept per image after
NMS step. -1 means keeping all bboxes after NMS step.
score_threshold(float): Threshold to filter out bounding boxes with
low confidence score. If not provided, consider all boxes.
nms_eta(float): The parameter for adaptive NMS.
Returns:
The detected bounding boxes which are a Tensor.
Examples:
.. code-block:: python
pb = layers.data(name='prior_box', shape=[10, 4],
append_batch_size=False, dtype='float32')
pbv = layers.data(name='prior_box_var', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc = layers.data(name='target_box', shape=[21, 4],
append_batch_size=False, dtype='float32')
scores = layers.data(name='scores', shape=[2, 21, 10],
append_batch_size=False, dtype='float32')
nmsed_outs = fluid.layers.detection_output(scores=scores,
loc=loc,
prior_box=pb,
prior_box_var=pbv)
"""
helper
=
LayerHelper
(
"detection_output"
,
**
locals
())
decoded_box
=
helper
.
create_tmp_variable
(
dtype
=
loc
.
dtype
)
helper
.
append_op
(
type
=
"box_coder"
,
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
loc
},
outputs
=
{
'OutputBox'
:
decoded_box
},
attrs
=
{
'code_type'
:
'decode_center_size'
})
nmsed_outs
=
helper
.
create_tmp_variable
(
dtype
=
decoded_box
.
dtype
)
helper
.
append_op
(
type
=
"multiclass_nms"
,
inputs
=
{
'Scores'
:
scores
,
'BBoxes'
:
decoded_box
},
outputs
=
{
'Out'
:
nmsed_outs
},
attrs
=
{
'background_label'
:
0
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'nms_eta'
:
1.0
})
return
nmsed_outs
python/paddle/v2/fluid/tests/test_detection.py
0 → 100644
浏览文件 @
1dceb99e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
program_guard
class
TestBook
(
unittest
.
TestCase
):
def
test_detection_output
(
self
):
program
=
Program
()
with
program_guard
(
program
):
pb
=
layers
.
data
(
name
=
'prior_box'
,
shape
=
[
10
,
4
],
append_batch_size
=
False
,
dtype
=
'float32'
)
pbv
=
layers
.
data
(
name
=
'prior_box_var'
,
shape
=
[
10
,
4
],
append_batch_size
=
False
,
dtype
=
'float32'
)
loc
=
layers
.
data
(
name
=
'target_box'
,
shape
=
[
20
,
4
],
append_batch_size
=
False
,
dtype
=
'float32'
)
scores
=
layers
.
data
(
name
=
'scores'
,
shape
=
[
2
,
20
,
10
],
append_batch_size
=
False
,
dtype
=
'float32'
)
out
=
layers
.
detection_output
(
scores
=
scores
,
loc
=
loc
,
prior_box
=
pb
,
prior_box_var
=
pbv
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录