Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1b60f7f6
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1b60f7f6
编写于
9月 02, 2020
作者:
T
tangwei12
提交者:
GitHub
9月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add embedding 2.0 (#26649) (#26903)
* add embedding 2.0 * add embedding support input int32
上级
89ef2915
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
548 addition
and
125 deletion
+548
-125
paddle/fluid/operators/lookup_table_v2_op.cc
paddle/fluid/operators/lookup_table_v2_op.cc
+12
-1
paddle/fluid/operators/lookup_table_v2_op.cu
paddle/fluid/operators/lookup_table_v2_op.cu
+59
-14
paddle/fluid/operators/lookup_table_v2_op.h
paddle/fluid/operators/lookup_table_v2_op.h
+89
-84
python/paddle/fluid/input.py
python/paddle/fluid/input.py
+1
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+1
-0
python/paddle/fluid/tests/unittests/test_adam_op.py
python/paddle/fluid/tests/unittests/test_adam_op.py
+1
-1
python/paddle/fluid/tests/unittests/test_lookup_table_v2_op.py
...n/paddle/fluid/tests/unittests/test_lookup_table_v2_op.py
+2
-2
python/paddle/fluid/tests/unittests/test_nn_functional_embedding_dygraph.py
...d/tests/unittests/test_nn_functional_embedding_dygraph.py
+36
-0
python/paddle/fluid/tests/unittests/test_nn_functional_embedding_static.py
...id/tests/unittests/test_nn_functional_embedding_static.py
+82
-0
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+1
-0
python/paddle/nn/functional/input.py
python/paddle/nn/functional/input.py
+115
-2
python/paddle/nn/layer/common.py
python/paddle/nn/layer/common.py
+149
-21
未找到文件。
paddle/fluid/operators/lookup_table_v2_op.cc
浏览文件 @
1b60f7f6
...
...
@@ -15,8 +15,8 @@ limitations under the License. */
#include "paddle/fluid/operators/lookup_table_v2_op.h"
#include <memory>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace
paddle
{
...
...
@@ -196,3 +196,14 @@ REGISTER_OP_CPU_KERNEL(lookup_table_v2, ops::LookupTableV2Kernel<float>,
REGISTER_OP_CPU_KERNEL
(
lookup_table_v2_grad
,
ops
::
LookupTableV2GradKernel
<
float
>
,
ops
::
LookupTableV2GradKernel
<
double
>
);
/* ========================== register checkpoint ===========================*/
REGISTER_OP_VERSION
(
lookup_table_v2
)
.
AddCheckpoint
(
R"ROC(fix lookup_table_v2, add input type `int32`)ROC"
,
paddle
::
framework
::
compatible
::
OpVersionDesc
()
.
BugfixWithBehaviorChanged
(
"lookup_table_v2 support input type "
"`int64`; after support input type "
"`int32/int64`"
));
/* ========================================================================== */
paddle/fluid/operators/lookup_table_v2_op.cu
浏览文件 @
1b60f7f6
...
...
@@ -85,6 +85,14 @@ __global__ void LookupTableV2Grad(T *table, const T *output, const int64_t *ids,
}
}
template
<
typename
T
>
__global__
void
InputTypeCovert
(
const
T
*
in_ids
,
const
int64_t
K
,
int64_t
*
out_ids
)
{
for
(
int
i
=
0
;
i
<
K
;
i
++
)
{
out_ids
[
i
]
=
(
int64_t
)(
in_ids
[
i
]);
}
}
template
<
typename
T
>
class
LookupTableV2CUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -101,23 +109,37 @@ class LookupTableV2CUDAKernel : public framework::OpKernel<T> {
size_t
D
=
table_t
->
dims
()[
1
];
size_t
K
=
ids_t
->
numel
();
auto
*
ids
=
ids_t
->
data
<
int64_t
>
();
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dim3
threads
(
256
,
4
);
dim3
grids
(
80
,
1
);
// copy GPU memory to CPU pinned memory
framework
::
Vector
<
int64_t
>
ids
;
ids
.
resize
(
K
);
const
int64_t
*
ids_p
=
nullptr
;
if
(
ids_t
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
InputTypeCovert
<
int
><<<
grids
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
ids_t
->
data
<
int
>
(),
K
,
ids
.
MutableData
(
context
.
GetPlace
()));
ids_p
=
ids
.
MutableData
(
context
.
GetPlace
());
}
else
{
ids_p
=
ids_t
->
data
<
int64_t
>
();
}
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
padding_idx
==
-
1
)
LookupTableV2
<
T
,
256
,
4
,
80
,
false
><<<
grids
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
output
,
table
,
ids
,
N
,
K
,
D
,
padding_idx
);
output
,
table
,
ids
_p
,
N
,
K
,
D
,
padding_idx
);
else
LookupTableV2
<
T
,
256
,
4
,
80
,
true
><<<
grids
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
output
,
table
,
ids
,
N
,
K
,
D
,
padding_idx
);
output
,
table
,
ids
_p
,
N
,
K
,
D
,
padding_idx
);
}
};
...
...
@@ -139,16 +161,24 @@ class LookupTableV2GradCUDAKernel : public framework::OpKernel<T> {
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int64_t
ids_num
=
ids
->
numel
();
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
auto
stream
=
dev_ctx
.
stream
();
// copy GPU memory to CPU pinned memory
framework
::
Vector
<
int64_t
>
new_rows
;
new_rows
.
resize
(
ids_num
);
auto
gpu_place
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
());
// TODO(yuyang18): Strange code here.
memory
::
Copy
(
gpu_place
,
new_rows
.
CUDAMutableData
(
context
.
GetPlace
()),
gpu_place
,
ids_data
,
ids_num
*
sizeof
(
int64_t
),
stream
);
if
(
ids
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
InputTypeCovert
<
int
><<<
grids
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
ids
->
data
<
int
>
(),
ids_num
,
new_rows
.
MutableData
(
context
.
GetPlace
()));
}
else
{
memory
::
Copy
(
gpu_place
,
new_rows
.
CUDAMutableData
(
context
.
GetPlace
()),
gpu_place
,
ids_data
,
ids_num
*
sizeof
(
int64_t
),
stream
);
}
d_table
->
set_rows
(
new_rows
);
auto
*
d_table_value
=
d_table
->
mutable_value
();
...
...
@@ -177,17 +207,32 @@ class LookupTableV2GradCUDAKernel : public framework::OpKernel<T> {
int
N
=
d_table_t
->
dims
()[
0
];
int
D
=
d_table_t
->
dims
()[
1
];
int
K
=
ids_t
->
numel
();
const
int64_t
*
ids
=
ids_t
->
data
<
int64_t
>
();
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
// copy GPU memory to CPU pinned memory
framework
::
Vector
<
int64_t
>
ids
;
ids
.
resize
(
K
);
const
int64_t
*
ids_p
=
nullptr
;
if
(
ids_t
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
InputTypeCovert
<
int
><<<
grids
,
threads
,
0
,
context
.
cuda_device_context
().
stream
()
>>>
(
ids_t
->
data
<
int
>
(),
K
,
ids
.
MutableData
(
context
.
GetPlace
()));
ids_p
=
ids
.
MutableData
(
context
.
GetPlace
());
}
else
{
ids_p
=
ids_t
->
data
<
int64_t
>
();
}
const
T
*
d_output
=
d_output_t
->
data
<
T
>
();
T
*
d_table
=
d_table_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_table_t
);
t
.
device
(
*
dev_ctx
.
eigen_device
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
LookupTableV2Grad
<
T
,
128
,
8
,
8
><<<
grids
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
d_table
,
d_output
,
ids
,
N
,
K
,
D
);
d_table
,
d_output
,
ids
_p
,
N
,
K
,
D
);
}
}
};
...
...
paddle/fluid/operators/lookup_table_v2_op.h
浏览文件 @
1b60f7f6
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include <string>
#include <vector>
...
...
@@ -45,84 +46,70 @@ class LookupTableV2Kernel : public framework::OpKernel<T> {
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
auto
*
table_var
=
context
.
InputVar
(
"W"
);
auto
id_name
=
context
.
InputNames
(
"Ids"
).
front
();
auto
embedding_name
=
context
.
InputNames
(
"W"
).
front
();
auto
out_name
=
context
.
OutputNames
(
"Out"
).
front
();
// for remote prefetch
auto
epmap
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
);
auto
remote_prefetch
=
context
.
Attr
<
bool
>
(
"remote_prefetch"
);
auto
table_names
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
ids_numel
=
ids_t
->
numel
();
if
(
remote_prefetch
&&
!
epmap
.
empty
())
{
// if epmap is not empty, then the parameter will be fetched from remote
// parameter server
std
::
vector
<
int64_t
>
ids
;
ids
.
reserve
(
ids_numel
);
#ifdef PADDLE_WITH_DISTRIBUTE
operators
::
distributed
::
prefetch
(
id_name
,
out_name
,
embedding_name
,
false
,
table_names
,
epmap
,
context
,
context
.
scope
());
#else
PADDLE_THROW
(
"paddle is not compiled with distribute support, can not do "
"parameter prefetch!"
);
#endif
if
(
ids_t
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
std
::
transform
(
ids_t
->
data
<
int
>
(),
ids_t
->
data
<
int
>
()
+
ids_numel
,
std
::
back_inserter
(
ids
),
[
&
](
int
id
)
{
return
static_cast
<
int64_t
>
(
id
);
});
}
else
{
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
int64_t
ids_numel
=
ids_t
->
numel
();
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
,
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
row_number
,
ids
[
i
]);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
row_number
,
ids
[
i
]);
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
row_width
*
sizeof
(
T
));
}
framework
::
TensorToVector
(
*
ids_t
,
&
ids
);
}
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
,
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
row_number
,
ids
[
i
]);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
row_number
,
ids
[
i
]);
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
row_width
*
sizeof
(
T
));
}
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
const
auto
&
table_t
=
table_var
->
Get
<
SelectedRows
>
();
int64_t
row_width
=
table_t
.
value
().
dims
()[
1
]
;
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
()
;
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
()
);
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0. But received %ld"
,
ids
[
i
]);
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists. But received %d."
,
id_index
);
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
output
+
i
*
row_width
);
}
}
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
const
auto
&
table_t
=
table_var
->
Get
<
SelectedRows
>
()
;
int64_t
row_width
=
table_t
.
value
().
dims
()[
1
]
;
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
(
);
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0. But received %ld"
,
ids
[
i
]);
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists. But received %d."
,
id_index
);
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
output
+
i
*
row_width
);
}
}
}
...
...
@@ -151,17 +138,23 @@ class LookupTableV2GradKernel : public framework::OpKernel<T> {
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
if
(
is_sparse
)
{
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
ids
_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
int64_t
ids_num
=
ids_t
->
numel
();
std
::
vector
<
int64_t
>
ids
;
ids
.
reserve
(
ids_num
);
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int64_t
ids_num
=
ids
->
numel
();
if
(
ids_t
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
std
::
transform
(
ids_t
->
data
<
int
>
(),
ids_t
->
data
<
int
>
()
+
ids_num
,
std
::
back_inserter
(
ids
),
[
&
](
int
id
)
{
return
static_cast
<
int64_t
>
(
id
);
});
}
else
{
framework
::
TensorToVector
(
*
ids_t
,
&
ids
);
}
std
::
vector
<
int64_t
>
new_rows
;
new_rows
.
resize
(
ids_num
);
std
::
memcpy
(
&
new_rows
[
0
],
ids_data
,
ids_num
*
sizeof
(
int64_t
));
d_table
->
set_rows
(
new_rows
);
d_table
->
set_rows
(
ids
);
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]});
...
...
@@ -185,11 +178,23 @@ class LookupTableV2GradKernel : public framework::OpKernel<T> {
memcpy
(
d_table_data
,
d_output_data
,
sizeof
(
T
)
*
d_output
->
numel
());
}
else
{
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
ids
_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
int64_t
ids_num
=
ids_t
->
numel
();
std
::
vector
<
int64_t
>
ids
;
ids
.
reserve
(
ids_num
);
if
(
ids_t
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
std
::
transform
(
ids_t
->
data
<
int
>
(),
ids_t
->
data
<
int
>
()
+
ids_num
,
std
::
back_inserter
(
ids
),
[
&
](
int
id
)
{
return
static_cast
<
int64_t
>
(
id
);
});
}
else
{
framework
::
TensorToVector
(
*
ids_t
,
&
ids
);
}
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
auto
*
ids_data
=
ids
.
data
();
int64_t
N
=
table_dim
[
0
];
int64_t
D
=
table_dim
[
1
];
...
...
@@ -199,7 +204,7 @@ class LookupTableV2GradKernel : public framework::OpKernel<T> {
memset
(
d_table_data
,
0
,
d_table
->
numel
()
*
sizeof
(
T
));
for
(
int64_t
i
=
0
;
i
<
ids
->
numel
()
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
ids
_num
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids_data
[
i
]
==
padding_idx
)
{
// the gradient of padding_idx should be 0, already done by memset, so
// do nothing.
...
...
python/paddle/fluid/input.py
浏览文件 @
1b60f7f6
...
...
@@ -129,6 +129,7 @@ def one_hot(input, depth, allow_out_of_range=False):
return
one_hot_out
@
deprecated
(
since
=
'2.0.0'
,
update_to
=
'paddle.nn.functional.embedding'
)
def
embedding
(
input
,
size
,
is_sparse
=
False
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
1b60f7f6
...
...
@@ -367,6 +367,7 @@ def fc(input,
return helper.append_activation(pre_activation)
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
def embedding(input,
size,
is_sparse=False,
...
...
python/paddle/fluid/tests/unittests/test_adam_op.py
浏览文件 @
1b60f7f6
...
...
@@ -450,7 +450,7 @@ class TestAdamOpV2(unittest.TestCase):
import
paddle
paddle
.
disable_static
()
emb
=
paddle
.
nn
.
Embedding
(
[
10
,
10
]
)
emb
=
paddle
.
nn
.
Embedding
(
10
,
10
)
adam
=
paddle
.
optimizer
.
Adam
(
0.001
,
parameters
=
emb
.
parameters
())
state_dict
=
adam
.
state_dict
()
...
...
python/paddle/fluid/tests/unittests/test_lookup_table_v2_op.py
浏览文件 @
1b60f7f6
...
...
@@ -59,7 +59,7 @@ class TestLookupTableOpWithTensorIds(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"lookup_table_v2"
table
=
np
.
random
.
random
((
17
,
31
)).
astype
(
"float64"
)
ids
=
np
.
random
.
randint
(
low
=
0
,
high
=
17
,
size
=
(
2
,
4
,
5
)).
astype
(
"int
64
"
)
ids
=
np
.
random
.
randint
(
low
=
0
,
high
=
17
,
size
=
(
2
,
4
,
5
)).
astype
(
"int
32
"
)
self
.
inputs
=
{
'W'
:
table
,
'Ids'
:
ids
}
self
.
outputs
=
{
'Out'
:
table
[
ids
.
flatten
()].
reshape
((
2
,
4
,
5
,
31
))}
...
...
@@ -100,7 +100,7 @@ class TestLookupTableOpWithTensorIdsAndPadding(TestLookupTableOpWithTensorIds):
class
TestLookupTableWIsSelectedRows
(
unittest
.
TestCase
):
def
prepare_ids
(
self
,
scope
,
place
):
ids_tensor
=
scope
.
var
(
'Ids'
).
get_tensor
()
ids_array
=
np
.
array
([
0
,
4
,
3
,
5
]).
astype
(
"int
64
"
)
ids_array
=
np
.
array
([
0
,
4
,
3
,
5
]).
astype
(
"int
32
"
)
ids_tensor
.
set
(
ids_array
,
place
)
return
ids_array
...
...
python/paddle/fluid/tests/unittests/test_nn_functional_embedding_dygraph.py
0 → 100644
浏览文件 @
1b60f7f6
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
class
EmbeddingDygraph
(
unittest
.
TestCase
):
def
test_1
(
self
):
import
paddle
import
paddle.nn
as
nn
import
numpy
as
np
paddle
.
disable_static
()
# example 1
inp_word
=
np
.
array
([[
2
,
3
,
5
],
[
4
,
2
,
1
]]).
astype
(
'int64'
)
inp_word
.
shape
# [2, 3]
dict_size
=
20
emb
=
nn
.
Embedding
(
dict_size
,
32
,
weight_attr
=
'emb.w'
,
sparse
=
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nn_functional_embedding_static.py
0 → 100644
浏览文件 @
1b60f7f6
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
functional
class
EmbeddingStatic
(
unittest
.
TestCase
):
def
test_1
(
self
):
prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
):
def
test_bad_x
():
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np
.
random
.
random
(
size
=
(
128
,
100
)))
param_attr
=
fluid
.
ParamAttr
(
name
=
"emb_weight"
,
learning_rate
=
0.5
,
initializer
=
initializer
,
trainable
=
True
)
weight
=
prog
.
global_block
().
create_parameter
(
(
128
,
100
),
attr
=
param_attr
,
dtype
=
"float32"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
4
],
append_batch_size
=
False
,
dtype
=
"int64"
)
emb
=
functional
.
embedding
(
x
=
label
,
weight
=
weight
,
sparse
=
True
,
name
=
"embedding"
)
test_bad_x
()
def
test_2
(
self
):
prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
):
def
test_bad_x
():
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np
.
random
.
random
(
size
=
(
128
,
100
)))
param_attr
=
fluid
.
ParamAttr
(
name
=
"emb_weight"
,
learning_rate
=
0.5
,
initializer
=
initializer
,
trainable
=
True
)
weight
=
prog
.
global_block
().
create_parameter
(
(
128
,
100
),
attr
=
param_attr
,
dtype
=
"float32"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
4
],
append_batch_size
=
False
,
dtype
=
"int32"
)
emb
=
functional
.
embedding
(
x
=
label
,
weight
=
weight
,
sparse
=
True
,
name
=
"embedding"
)
test_bad_x
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/nn/functional/__init__.py
浏览文件 @
1b60f7f6
...
...
@@ -233,3 +233,4 @@ from .vision import space_to_depth #DEFINE_ALIAS
from
.vision
import
yolo_box
#DEFINE_ALIAS
from
.vision
import
yolov3_loss
#DEFINE_ALIAS
from
.input
import
one_hot
#DEFINE_ALIAS
from
.input
import
embedding
#DEFINE_ALIAS
python/paddle/nn/functional/input.py
浏览文件 @
1b60f7f6
...
...
@@ -19,7 +19,7 @@ from ...fluid.layer_helper import LayerHelper
from
...fluid.layers
import
core
from
...fluid.data_feeder
import
check_variable_and_dtype
,
check_dtype
__all__
=
[
'one_hot'
]
__all__
=
[
'one_hot'
,
'embedding'
]
def
one_hot
(
x
,
num_classes
,
name
=
None
):
...
...
@@ -83,6 +83,7 @@ def one_hot(x, num_classes, name=None):
# [0., 1., 0., 0.],
# [0., 0., 0., 1.],
# [1., 0., 0., 0.]]
"""
if
in_dygraph_mode
():
...
...
@@ -94,7 +95,7 @@ def one_hot(x, num_classes, name=None):
one_hot_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
'float32'
)
if
not
isinstance
(
num_classes
,
Variable
):
# user attribute
# user attribute
inputs
=
{
'X'
:
x
}
attrs
=
{
'depth'
:
num_classes
,
'allow_out_of_range'
:
False
}
else
:
...
...
@@ -108,3 +109,115 @@ def one_hot(x, num_classes, name=None):
outputs
=
{
'Out'
:
one_hot_out
},
stop_gradient
=
True
)
return
one_hot_out
def
embedding
(
x
,
weight
,
padding_idx
=
None
,
sparse
=
False
,
name
=
None
):
"""
The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
The shape of output Tensor is generated by appending the last dimension of the input Tensor shape
with embedding size.
**Note:** The id in :attr:`input` must satisfy :math:`0 =< id < weight.shape[0]` ,
otherwise the program will throw an exception and exit.
.. code-block:: text
Case 1:
input is a Tensor.
padding_idx = -1
x.data = [[1, 3], [2, 4], [4, 127]]
x.shape = [3, 2]
weight.shape = [128, 16]
output is a Tensor:
out.shape = [3, 2, 16]
out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
[0.345421456, 0.524563927, ..., 0.144534654]],
[[0.345249859, 0.124939536, ..., 0.194353745],
[0.945345345, 0.435394634, ..., 0.435345365]],
[[0.945345345, 0.435394634, ..., 0.435345365],
[0.0, 0.0, ..., 0.0 ]]] # padding data
The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
It will pad all-zero data when ids is 127.
Args:
x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should
satisfy :math:`0<= id < weight.shape[0]` .
weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which
indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
sparse(bool): The flag indicating whether to use sparse update. This parameter only
affects the performance of the backwards gradient update. It is recommended to set
True because sparse update is faster. But some optimizers does not support sparse update,
such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
:ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
:ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
In these cases, is_sparse must be False. Default: False.
padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
If set None, it makes no effect to output. Default: None.
name(str|None): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
Tensor: Embedding Tensor mapped by input. The data type is the same as :attr:`weight`.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
weight = prog.global_block().create_parameter(
attr=self._param_attr,
shape=param_shape,
dtype=self._dtype,
default_initializer=Constant(1.0))
prog = paddle.static.Program()
weight = prog.global_block().create_parameter(
(128, 100), dtype="float32", default_initializer=Constant(1.0))
label = paddle.data(
name="label",
shape=[4],
append_batch_size=False,
dtype="int64")
emb = nn.embedding(
x=label, weight=weight, sparse=True, name="embedding")
"""
if
in_dygraph_mode
():
return
core
.
ops
.
lookup_table_v2
(
weight
,
x
,
'is_sparse'
,
sparse
,
'is_distributed'
,
False
,
'remote_prefetch'
,
False
,
'padding_idx'
,
padding_idx
)
else
:
helper
=
LayerHelper
(
'embedding'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
check_variable_and_dtype
(
x
,
'input'
,
[
'int32'
,
'int64'
],
'embedding'
)
is_distributed
=
False
remote_prefetch
=
sparse
and
(
not
is_distributed
)
tmp
=
helper
.
create_variable_for_type_inference
(
dtype
)
padding_idx
=
-
1
if
padding_idx
is
None
else
padding_idx
if
padding_idx
>=
0
else
(
weight
.
shape
[
0
]
+
padding_idx
)
helper
.
append_op
(
type
=
'lookup_table_v2'
,
inputs
=
{
'Ids'
:
x
,
'W'
:
weight
},
outputs
=
{
'Out'
:
tmp
},
attrs
=
{
'is_sparse'
:
sparse
,
'is_distributed'
:
is_distributed
,
'remote_prefetch'
:
remote_prefetch
,
'padding_idx'
:
padding_idx
})
return
tmp
python/paddle/nn/layer/common.py
浏览文件 @
1b60f7f6
...
...
@@ -15,7 +15,7 @@
# TODO: define the common classes to build a neural network
from
...fluid.dygraph
import
BilinearTensorProduct
#DEFINE_ALIAS
from
...fluid.dygraph
import
Pool2D
#DEFINE_ALIAS
from
...fluid.dygraph
import
Embedding
#DEFINE_ALIAS
from
...fluid.dygraph
import
Linear
#DEFINE_ALIAS
from
...fluid.dygraph
import
Flatten
#DEFINE_ALIAS
from
...fluid.dygraph
import
layers
from
..
import
functional
as
F
...
...
@@ -146,9 +146,9 @@ class UpSample(layers.Layer):
'nearest' : Nearest neighbor interpolation
'bicubic' : Bicubic interpolation
Linear interpolation is the method of using a line connecting two known quantities
to determine the value of an unknown quantity between the two known quantities.
Linear interpolation is the method of using a line connecting two known quantities
to determine the value of an unknown quantity between the two known quantities.
Nearest neighbor interpolation is to perform nearest neighbor interpolation
in both the 3rd dimension(in height direction) and the 4th dimension(in width
direction) on input tensor.
...
...
@@ -158,7 +158,7 @@ class UpSample(layers.Layer):
W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then
again in the other direction.
Bicubic interpolation is an extension of cubic interpolation for interpolating
data points on a two-dimensional regular grid. The interpolated surface is
smoother than corresponding surfaces obtained by bilinear interpolation or
...
...
@@ -205,7 +205,7 @@ class UpSample(layers.Layer):
output: (N,C,H_out,W_out) where:
H_out = round(H_{in} * scale_{factor})
W_out = round(W_{in} * scale_{factor})
Bilinear interpolation:
if:
align_corners = False , align_mode = 0
...
...
@@ -252,19 +252,19 @@ class UpSample(layers.Layer):
https://en.wikipedia.org/wiki/Linear_interpolation.
For details of linear interpolation, please refer to Wikipedia:
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation.
For details of bicubic interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bicubic_interpolation
For details of trilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Trilinear_interpolation.
Parameters:
x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
its data format is specified by :attr:`data_format`.
...
...
@@ -537,8 +537,8 @@ class Pad2D(layers.Layer):
If mode is 'reflect', paddings[0] and paddings[1] must be no greater
than height-1. And the width dimension has the same condition.
Parameters:
paddings (int | List[int32]): The padding size. If padding is a int, uses the same
padding in all boundaries, if padding is a List, it must contain four integers,
paddings (int | List[int32]): The padding size. If padding is a int, uses the same
padding in all boundaries, if padding is a List, it must contain four integers,
(padding_top, padding_bottom, padding_left, padding_right).
Default is [0, 0, 0, 0].
mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
...
...
@@ -550,7 +550,7 @@ class Pad2D(layers.Layer):
data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
the input data.
Default is "NCHW"
Returns:
Returns:
None
Examples:
.. code-block:: text
...
...
@@ -631,11 +631,11 @@ class Bilinear(layers.Layer):
in1_features (int): The dimension of each first input(`x1`).
in2_features (int): The dimension of each second input(`x2`).
out_features (int): The dimension of output of this layer.
weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
this layer. The default value is None.
bias_attr (ParamAttr, optional): The parameter attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. The default value is None.
If it is set to None, the bias is initialized zero. The default value is None.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
...
...
@@ -702,7 +702,7 @@ class Dropout(layers.Layer):
"""
Dropout is a regularization technique for reducing overfitting by preventing
neuron co-adaption during training as described in the paper:
`Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
`Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
The dropout operator randomly sets the outputs of some units to zero, while upscale others
according to the given dropout probability.
...
...
@@ -771,8 +771,8 @@ class Dropout2d(layers.Layer):
Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
on every forward call with probability `p` using samples from a Bernoulli distribution.
Dropout2d will help promote independence between feature maps as described in the paper:
`Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
Dropout2d will help promote independence between feature maps as described in the paper:
`Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
See ``paddle.nn.functional.dropout2d`` for more details.
...
...
@@ -829,8 +829,8 @@ class Dropout3d(layers.Layer):
Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
on every forward call with probability `p` using samples from a Bernoulli distribution.
Dropout3d will help promote independence between feature maps as described in the paper:
`Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
Dropout3d will help promote independence between feature maps as described in the paper:
`Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
See ``paddle.nn.functional.dropout3d`` for more details.
...
...
@@ -1547,3 +1547,131 @@ class CosineSimilarity(layers.Layer):
def
forward
(
self
,
x1
,
x2
):
return
F
.
cosine_similarity
(
x1
,
x2
,
axis
=
self
.
_axis
,
eps
=
self
.
_eps
)
class
Embedding
(
layers
.
Layer
):
"""
:alias_main: paddle.nn.Embedding
:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
:old_api: paddle.fluid.dygraph.Embedding
**Embedding Layer**
This interface is used to construct a callable object of the ``Embedding`` class.
For specific usage, refer to code examples. It implements the function of the Embedding Layer.
This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
It automatically constructs a 2D embedding matrix based on the
input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .
The shape of output Tensor is generated by appending an emb_size dimension to the
last dimension of the input Tensor shape.
**Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
otherwise the program will throw an exception and exit.
.. code-block:: text
Case 1:
input is a Tensor. padding_idx = -1
input.data = [[1, 3], [2, 4], [4, 127]
input.shape = [3, 2]
Given size = [128, 16]
output is a Tensor:
out.shape = [3, 2, 16]
out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
[0.345421456, 0.524563927, ..., 0.144534654]],
[[0.345249859, 0.124939536, ..., 0.194353745],
[0.945345345, 0.435394634, ..., 0.435345365]],
[[0.945345345, 0.435394634, ..., 0.435345365],
[0.0, 0.0, ..., 0.0 ]]] # padding data
The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
It will pad all-zero data when ids is 127.
Parameters:
num_embeddings (int): Just one element which indicate the size
of the dictionary of embeddings.
embedding_dim: Just one element which indicate the size of each embedding vector respectively.
padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
If set None, it makes no effect to output. Default: None.
sparse(bool): The flag indicating whether to use sparse update. This parameter only
affects the performance of the backwards gradient update. It is recommended to set
True because sparse update is faster. But some optimizer does not support sparse update,
such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
:ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
:ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
In these case, is_sparse must be False. Default: False.
weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
The local word vector needs to be transformed into numpy format, and the shape of local word
vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
is used to load custom or pre-trained word vectors. See code example 2 for details.
name(str|None): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Attribute:
**weight** (Parameter): the learnable weights of this layer.
Returns:
None
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
# example 1
inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
inp_word.shape # [2, 3]
dict_size = 20
emb = nn.Embedding(
dict_size,
32,
sparse=False)
"""
def
__init__
(
self
,
num_embeddings
,
embedding_dim
,
padding_idx
=
None
,
sparse
=
False
,
weight_attr
=
None
,
name
=
None
):
super
(
Embedding
,
self
).
__init__
()
self
.
_num_embeddings
=
num_embeddings
self
.
_embedding_dim
=
embedding_dim
self
.
_sparse
=
sparse
self
.
_is_distributed
=
False
self
.
_padding_idx
=
-
1
if
padding_idx
is
None
else
padding_idx
if
padding_idx
>=
0
else
(
num_embeddings
+
padding_idx
)
self
.
_dtype
=
self
.
_helper
.
get_default_dtype
()
self
.
_size
=
[
self
.
_num_embeddings
,
self
.
_embedding_dim
]
self
.
_weight_attr
=
weight_attr
self
.
_remote_prefetch
=
False
self
.
_name
=
name
self
.
_weight
=
self
.
create_parameter
(
attr
=
self
.
_weight_attr
,
shape
=
self
.
_size
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
forward
(
self
,
x
):
return
F
.
embedding
(
x
,
weight
=
self
.
_weight
,
padding_idx
=
self
.
_padding_idx
,
sparse
=
self
.
_sparse
,
name
=
self
.
_name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录