Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1b564bc4
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1b564bc4
编写于
12月 13, 2018
作者:
Z
Zeng Jinle
提交者:
GitHub
12月 13, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14670 from sneaxiy/refactor_eager_deletion
Rewrite eager deletion
上级
e3c4b0da
2328bee1
变更
42
隐藏空白更改
内联
并排
Showing
42 changed file
with
1393 addition
and
637 deletion
+1393
-637
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+4
-0
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+5
-8
paddle/fluid/framework/details/computation_op_handle.cc
paddle/fluid/framework/details/computation_op_handle.cc
+4
-2
paddle/fluid/framework/details/computation_op_handle.h
paddle/fluid/framework/details/computation_op_handle.h
+5
-1
paddle/fluid/framework/details/eager_deletion_op_handle.cc
paddle/fluid/framework/details/eager_deletion_op_handle.cc
+122
-0
paddle/fluid/framework/details/eager_deletion_op_handle.h
paddle/fluid/framework/details/eager_deletion_op_handle.h
+58
-0
paddle/fluid/framework/details/eager_deletion_pass.cc
paddle/fluid/framework/details/eager_deletion_pass.cc
+101
-0
paddle/fluid/framework/details/eager_deletion_pass.h
paddle/fluid/framework/details/eager_deletion_pass.h
+32
-0
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+3
-3
paddle/fluid/framework/details/op_graph_view.cc
paddle/fluid/framework/details/op_graph_view.cc
+3
-0
paddle/fluid/framework/details/op_graph_view.h
paddle/fluid/framework/details/op_graph_view.h
+28
-1
paddle/fluid/framework/details/reference_count_op_handle.h
paddle/fluid/framework/details/reference_count_op_handle.h
+0
-138
paddle/fluid/framework/details/reference_count_pass.cc
paddle/fluid/framework/details/reference_count_pass.cc
+199
-147
paddle/fluid/framework/details/reference_count_pass.h
paddle/fluid/framework/details/reference_count_pass.h
+0
-5
paddle/fluid/framework/details/reference_count_pass_helper.cc
...le/fluid/framework/details/reference_count_pass_helper.cc
+21
-0
paddle/fluid/framework/details/reference_count_pass_helper.h
paddle/fluid/framework/details/reference_count_pass_helper.h
+51
-0
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+0
-18
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+96
-41
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+13
-40
paddle/fluid/framework/garbage_collector.cc
paddle/fluid/framework/garbage_collector.cc
+89
-0
paddle/fluid/framework/garbage_collector.h
paddle/fluid/framework/garbage_collector.h
+59
-92
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+9
-2
paddle/fluid/framework/ir/pass.h
paddle/fluid/framework/ir/pass.h
+9
-2
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+2
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+100
-40
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+1
-23
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+6
-0
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+1
-0
paddle/fluid/framework/tensor.h
paddle/fluid/framework/tensor.h
+4
-0
paddle/fluid/operators/controlflow/while_op.cc
paddle/fluid/operators/controlflow/while_op.cc
+28
-2
paddle/fluid/operators/reader/ctr_reader.h
paddle/fluid/operators/reader/ctr_reader.h
+6
-6
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+8
-1
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+2
-8
paddle/fluid/platform/stream_callback_manager.cc
paddle/fluid/platform/stream_callback_manager.cc
+63
-0
paddle/fluid/platform/stream_callback_manager.h
paddle/fluid/platform/stream_callback_manager.h
+13
-48
paddle/fluid/pybind/tensor_py.h
paddle/fluid/pybind/tensor_py.h
+6
-6
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+3
-3
python/paddle/fluid/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
...d/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
+86
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_gru_net.py
...ddle/fluid/tests/unittests/test_eager_deletion_gru_net.py
+49
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_lstm_net.py
...dle/fluid/tests/unittests/test_eager_deletion_lstm_net.py
+50
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_mnist.py
...paddle/fluid/tests/unittests/test_eager_deletion_mnist.py
+27
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_transformer.py
.../fluid/tests/unittests/test_eager_deletion_transformer.py
+27
-0
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
1b564bc4
...
...
@@ -72,6 +72,8 @@ cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto
cc_test
(
lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory
)
nv_test
(
lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor
)
cc_library
(
garbage_collector SRCS garbage_collector.cc DEPS device_context memory
)
cc_library
(
reader SRCS reader.cc DEPS lod_tensor ddim
)
cc_test
(
reader_test SRCS reader_test.cc DEPS reader
)
...
...
@@ -183,6 +185,8 @@ else()
cc_test
(
test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op
)
endif
()
target_link_libraries
(
executor garbage_collector
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph build_strategy
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
1b564bc4
...
...
@@ -45,10 +45,10 @@ cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base s
cc_library
(
modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper
)
if
(
WITH_GPU
)
cc_library
(
reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance
_op_handle graph graph_helper pass
)
endif
(
)
cc_library
(
reference_count_pass_helper SRCS reference_count_pass_helper.cc DEPS garbage_collector computation_op_handle
)
cc_library
(
eager_deletion_op_handle SRCS eager_deletion_op_handle.cc DEPS lod_tensor selected_rows reference_count_pass_helper
)
cc_library
(
eager_deletion_pass SRCS eager_deletion_pass.cc DEPS computation_op_handle eager_deletion
_op_handle graph graph_helper pass
)
cc_library
(
reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle graph graph_helper pass op_graph_view reference_count_pass_helper
)
cc_library
(
sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass
)
cc_library
(
all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass
)
...
...
@@ -56,10 +56,7 @@ cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_he
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle
)
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass
)
if
(
WITH_GPU
)
list
(
APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass
)
endif
()
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS
${
SSA_GRAPH_EXECUTOR_DEPS
}
)
...
...
paddle/fluid/framework/details/computation_op_handle.cc
浏览文件 @
1b564bc4
...
...
@@ -20,11 +20,13 @@ namespace paddle {
namespace
framework
{
namespace
details
{
ComputationOpHandle
::
ComputationOpHandle
(
ir
::
Node
*
node
,
Scope
*
scope
,
platform
::
Place
place
)
platform
::
Place
place
,
size_t
scope_idx
)
:
OpHandleBase
(
node
),
op_
(
framework
::
OpRegistry
::
CreateOp
(
*
node
->
Op
())),
scope_
(
scope
),
place_
(
place
)
{}
place_
(
place
),
scope_idx_
(
scope_idx
)
{}
void
ComputationOpHandle
::
RunImpl
()
{
WaitInputVarGenerated
(
place_
);
...
...
paddle/fluid/framework/details/computation_op_handle.h
浏览文件 @
1b564bc4
...
...
@@ -28,7 +28,8 @@ namespace framework {
namespace
details
{
struct
ComputationOpHandle
:
public
OpHandleBase
{
public:
ComputationOpHandle
(
ir
::
Node
*
node
,
Scope
*
scope
,
platform
::
Place
place
);
ComputationOpHandle
(
ir
::
Node
*
node
,
Scope
*
scope
,
platform
::
Place
place
,
size_t
scope_idx
);
std
::
string
Name
()
const
override
;
...
...
@@ -38,6 +39,8 @@ struct ComputationOpHandle : public OpHandleBase {
void
SetLockAndRecordEventFree
(
bool
b
)
{
is_lock_and_record_event_free_
=
b
;
}
size_t
GetScopeIdx
()
const
{
return
scope_idx_
;
}
protected:
void
RunImpl
()
override
;
...
...
@@ -47,6 +50,7 @@ struct ComputationOpHandle : public OpHandleBase {
std
::
unique_ptr
<
OperatorBase
>
op_
;
Scope
*
scope_
;
platform
::
Place
place_
;
size_t
scope_idx_
;
bool
is_lock_and_record_event_free_
{
false
};
};
}
// namespace details
...
...
paddle/fluid/framework/details/eager_deletion_op_handle.cc
0 → 100644
浏览文件 @
1b564bc4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
namespace
paddle
{
namespace
framework
{
namespace
details
{
EagerDeletionOpHandle
::
EagerDeletionOpHandle
(
ir
::
Node
*
node
,
const
Scope
*
scope
,
const
platform
::
Place
&
place
,
const
std
::
unordered_set
<
std
::
string
>
&
var_names
,
GarbageCollector
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
)
:
OpHandleBase
(
node
),
scope_
(
scope
),
var_names_
(
var_names
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place
))
{
dev_ctx_
=
reinterpret_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
dynamic_cast
<
StreamGarbageCollector
*>
(
gc_
))
{
platform
::
CUDADeviceGuard
guard
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
).
device
);
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
PADDLE_ENFORCE_NOT_NULL
(
event_
);
}
}
#endif
}
EagerDeletionOpHandle
::~
EagerDeletionOpHandle
()
{
#ifdef PADDLE_WITH_CUDA
if
(
event_
)
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx_
->
GetPlace
());
platform
::
CUDADeviceGuard
guard
(
gpu_place
.
device
);
PADDLE_ENFORCE
(
cudaEventDestroy
(
event_
));
}
#endif
}
std
::
string
EagerDeletionOpHandle
::
Name
()
const
{
return
"eager_deletion"
;
}
void
EagerDeletionOpHandle
::
RunImpl
()
{
auto
*
exec_scope
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
garbages
;
for
(
auto
&
name
:
var_names_
)
{
auto
it
=
ref_cnts_
->
find
(
name
);
// Var not found, not reference count has not decreased to 0
if
(
it
==
ref_cnts_
->
end
()
||
it
->
second
.
fetch_sub
(
1
)
!=
1
)
{
continue
;
}
auto
*
var
=
exec_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
)
{
continue
;
}
VLOG
(
2
)
<<
"Erase variable "
<<
name
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
garbages
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
()
->
MoveMemoryHolder
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
garbages
.
emplace_back
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
()
->
MoveMemoryHolder
());
}
else
if
(
var
->
IsType
<
LoDTensorArray
>
())
{
auto
*
tensor_arr
=
var
->
GetMutable
<
LoDTensorArray
>
();
for
(
auto
&
t
:
*
tensor_arr
)
{
garbages
.
emplace_back
(
t
.
MoveMemoryHolder
());
}
}
else
{
PADDLE_THROW
(
"Type %s of %s is not supported eager deletion"
,
var
->
Type
().
name
(),
name
);
}
}
if
(
!
garbages
.
empty
())
{
ClearGarbages
(
&
garbages
);
}
}
void
EagerDeletionOpHandle
::
ClearGarbages
(
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
*
garbages
)
{
#ifdef PADDLE_WITH_CUDA
if
(
event_
)
{
auto
compute_stream
=
dev_ctx_
->
stream
();
auto
callback_stream
=
reinterpret_cast
<
StreamGarbageCollector
*>
(
gc_
)
->
stream
();
auto
callback_func
=
[
=
]()
{
PADDLE_ENFORCE
(
cudaEventRecord
(
event_
,
compute_stream
));
PADDLE_ENFORCE
(
cudaStreamWaitEvent
(
callback_stream
,
event_
,
0
));
};
gc_
->
Add
(
std
::
move
(
*
garbages
),
callback_func
);
}
else
{
#endif
gc_
->
Add
(
std
::
move
(
*
garbages
));
#ifdef PADDLE_WITH_CUDA
}
#endif
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/eager_deletion_op_handle.h
0 → 100644
浏览文件 @
1b564bc4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <deque>
#include <string>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
namespace
paddle
{
namespace
framework
{
class
Scope
;
namespace
details
{
class
EagerDeletionOpHandle
:
public
OpHandleBase
{
public:
EagerDeletionOpHandle
(
ir
::
Node
*
node
,
const
Scope
*
scope
,
const
platform
::
Place
&
place
,
const
std
::
unordered_set
<
std
::
string
>
&
var_names
,
GarbageCollector
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
);
~
EagerDeletionOpHandle
();
std
::
string
Name
()
const
override
;
protected:
void
RunImpl
()
override
;
private:
void
ClearGarbages
(
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
*
garbages
);
const
Scope
*
scope_
;
std
::
unordered_set
<
std
::
string
>
var_names_
;
GarbageCollector
*
gc_
;
// not own
AtomicReferenceCountMap
*
ref_cnts_
;
// not own
#ifdef PADDLE_WITH_CUDA
platform
::
CUDADeviceContext
*
dev_ctx_
{
nullptr
};
cudaEvent_t
event_
{
nullptr
};
#endif
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/eager_deletion_pass.cc
0 → 100644
浏览文件 @
1b564bc4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <queue>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_pass.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
unique_ptr
<
ir
::
Graph
>
EagerDeletionPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
std
::
vector
<
AtomicReferenceCountMap
>>
(
kRuntimeReferenceCount
);
PADDLE_ENFORCE
(
ref_cnts
.
empty
(),
"kRuntimeReferenceCount should be initialized here!"
);
const
auto
&
vars
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
);
ref_cnts
.
resize
(
vars
.
size
());
const
auto
&
last_live_ops
=
Get
<
std
::
vector
<
LastLiveOpsOfVars
>>
(
kLastLiveOpsOfVars
);
const
auto
&
gcs
=
Get
<
GarbageCollectorMap
>
(
kGarbageCollector
);
const
auto
&
places
=
Get
<
std
::
vector
<
platform
::
Place
>>
(
kAllPlaces
);
// a reverse map of last_live_ops
// i.e., last op --> variable names which can be deleted.
std
::
unordered_map
<
ComputationOpHandle
*
,
std
::
unordered_set
<
std
::
string
>>
op_vars_map
;
for
(
auto
&
var_ops_map
:
last_live_ops
)
{
for
(
auto
&
var_ops_pair
:
var_ops_map
)
{
const
std
::
string
&
var_name
=
var_ops_pair
.
first
;
for
(
auto
*
op
:
var_ops_pair
.
second
)
{
op_vars_map
[
op
].
insert
(
var_name
);
}
}
}
for
(
auto
&
pair
:
op_vars_map
)
{
auto
*
op
=
pair
.
first
;
auto
&
var_names
=
pair
.
second
;
auto
*
eager_deletion_node
=
graph
->
CreateEmptyNode
(
"eager_deletion"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
eager_deletion_op
=
new
EagerDeletionOpHandle
(
eager_deletion_node
,
op
->
GetScope
(),
op
->
GetPlace
(),
var_names
,
gcs
.
at
(
places
[
op
->
GetScopeIdx
()]).
get
(),
&
(
ref_cnts
[
op
->
GetScopeIdx
()]));
auto
it
=
std
::
find_if
(
op
->
Outputs
().
begin
(),
op
->
Outputs
().
end
(),
[](
VarHandleBase
*
var
)
{
return
dynamic_cast
<
DummyVarHandle
*>
(
var
)
!=
nullptr
;
});
if
(
it
!=
op
->
Outputs
().
end
())
{
eager_deletion_op
->
AddInput
(
*
it
);
}
else
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
op
->
AddOutput
(
dep_var
);
eager_deletion_op
->
AddInput
(
dep_var
);
}
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dummy_leaf
);
eager_deletion_op
->
AddOutput
(
dummy_leaf
);
}
VLOG
(
10
)
<<
"Create "
<<
op_vars_map
.
size
()
<<
" EagerDeletionOpHandle(s)"
;
return
graph
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
eager_deletion_pass
,
paddle
::
framework
::
details
::
EagerDeletionPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kRuntimeReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLastLiveOpsOfVars
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kAllPlaces
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGarbageCollector
);
paddle/fluid/framework/details/eager_deletion_pass.h
0 → 100644
浏览文件 @
1b564bc4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
EagerDeletionPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
1b564bc4
...
...
@@ -565,7 +565,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
int
dev_id
)
const
{
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
ComputationOpHandle
(
result
->
CreateOpNode
(
node
->
Op
()),
local_scopes_
[
dev_id
],
places_
[
dev_id
]));
local_scopes_
[
dev_id
],
places_
[
dev_id
]
,
dev_id
));
CreateOpHandleIOs
(
result
,
node
,
dev_id
);
}
...
...
@@ -688,8 +688,8 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
for
(
size_t
scope_idx
=
0
;
scope_idx
<
num_places
;
++
scope_idx
)
{
auto
p
=
places_
[
scope_idx
];
auto
s
=
local_scopes_
[
scope_idx
];
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
ComputationOpHandle
(
result
->
CreateOpNode
(
node
->
Op
()),
s
,
p
));
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
ComputationOpHandle
(
result
->
CreateOpNode
(
node
->
Op
()),
s
,
p
,
scope_idx
));
CreateOpHandleIOs
(
result
,
node
,
scope_idx
);
}
}
...
...
paddle/fluid/framework/details/op_graph_view.cc
浏览文件 @
1b564bc4
...
...
@@ -23,6 +23,8 @@ namespace details {
OpGraphView
::
OpGraphView
(
const
std
::
vector
<
OpHandleBase
*>
&
ops
)
{
Build
(
ops
);
}
void
OpGraphView
::
Build
(
const
std
::
vector
<
OpHandleBase
*>
&
ops
)
{
preceding_ops_
.
clear
();
pending_ops_
.
clear
();
for
(
auto
&
op
:
ops
)
{
preceding_ops_
[
op
];
pending_ops_
[
op
];
...
...
@@ -40,6 +42,7 @@ void OpGraphView::Build(const std::vector<OpHandleBase *> &ops) {
std
::
unordered_set
<
OpHandleBase
*>
OpGraphView
::
AllOps
()
const
{
std
::
unordered_set
<
OpHandleBase
*>
ret
;
ret
.
reserve
(
preceding_ops_
.
size
());
for
(
auto
&
pair
:
preceding_ops_
)
{
ret
.
insert
(
pair
.
first
);
}
...
...
paddle/fluid/framework/details/op_graph_view.h
浏览文件 @
1b564bc4
...
...
@@ -14,7 +14,7 @@
#pragma once
#include <
memory
>
#include <
queue
>
#include <unordered_map>
#include <unordered_set>
#include <vector>
...
...
@@ -34,6 +34,11 @@ class OpGraphView {
bool
HasOp
(
OpHandleBase
*
op
)
const
;
// Use a visitor to visit all pending ops of op
// Stop when callback returns false
template
<
typename
Callback
>
bool
VisitAllPendingOps
(
OpHandleBase
*
op
,
Callback
&&
callback
)
const
;
private:
void
Build
(
const
std
::
vector
<
OpHandleBase
*>
&
ops
);
void
EnforceHasOp
(
OpHandleBase
*
op
)
const
;
...
...
@@ -44,6 +49,28 @@ class OpGraphView {
pending_ops_
;
};
template
<
typename
Callback
>
bool
OpGraphView
::
VisitAllPendingOps
(
OpHandleBase
*
op
,
Callback
&&
callback
)
const
{
EnforceHasOp
(
op
);
std
::
unordered_set
<
OpHandleBase
*>
visited
;
std
::
queue
<
OpHandleBase
*>
q
;
q
.
push
(
op
);
do
{
op
=
q
.
front
();
q
.
pop
();
for
(
auto
&
pending_op
:
pending_ops_
.
at
(
op
))
{
if
(
visited
.
count
(
pending_op
)
==
0
)
{
visited
.
insert
(
pending_op
);
if
(
!
callback
(
pending_op
))
{
return
false
;
}
}
}
}
while
(
!
q
.
empty
());
return
true
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_op_handle.h
已删除
100644 → 0
浏览文件 @
e3c4b0da
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <atomic>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
using
ReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
int
>
;
using
AtomicReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
std
::
atomic
<
int
>>
;
using
DeviceReferenceCountMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
ReferenceCountMap
>>
;
using
AtomicDeviceReferenceCountMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
AtomicReferenceCountMap
>>
;
using
DeviceGarbageCollectorMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
GarbageCollector
<
framework
::
Tensor
>>>
;
class
ReferenceCountOpHandle
:
public
OpHandleBase
{
public:
ReferenceCountOpHandle
(
ir
::
Node
*
node
,
const
Scope
*
scope
,
const
platform
::
CUDAPlace
&
place
,
const
std
::
vector
<
std
::
string
>
&
var_names
,
GarbageCollector
<
Tensor
>
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
)
:
OpHandleBase
(
node
),
scope_
(
scope
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
dev_ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
IsStreamGarabageCollector
())
{
platform
::
SetDeviceId
(
place
.
device
);
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
}
for
(
auto
&
name
:
var_names
)
AddVar
(
name
);
}
~
ReferenceCountOpHandle
()
{
if
(
IsStreamGarabageCollector
())
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx_
->
GetPlace
());
platform
::
SetDeviceId
(
gpu_place
.
device
);
PADDLE_ENFORCE
(
cudaEventDestroy
(
event_
));
}
}
std
::
string
Name
()
const
override
{
return
"reference_count"
;
}
void
AddVar
(
const
std
::
string
&
name
)
{
auto
it
=
var_names_
.
find
(
name
);
if
(
it
!=
var_names_
.
end
())
++
(
it
->
second
);
else
var_names_
[
name
]
=
1
;
}
protected:
void
RunImpl
()
override
{
auto
*
exec_scope
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
std
::
vector
<
Tensor
*>
tensors
;
for
(
auto
&
pair
:
var_names_
)
{
auto
&
name
=
pair
.
first
;
auto
it
=
ref_cnts_
->
find
(
name
);
if
(
it
==
ref_cnts_
->
end
())
continue
;
auto
*
var
=
exec_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
if
(
it
->
second
.
fetch_sub
(
pair
.
second
)
<=
pair
.
second
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
());
}
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
if
(
it
->
second
.
fetch_sub
(
pair
.
second
)
<=
pair
.
second
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
());
}
}
}
if
(
!
tensors
.
empty
())
{
ClearTensors
(
tensors
);
}
}
private:
void
ClearTensors
(
const
std
::
vector
<
Tensor
*>
&
tensors
)
{
auto
*
gc
=
dynamic_cast
<
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
);
if
(
gc
!=
nullptr
)
{
auto
compute_stream
=
dev_ctx_
->
stream
();
auto
callback_stream
=
gc
->
stream
();
auto
callback_func
=
[
=
]()
{
PADDLE_ENFORCE
(
cudaEventRecord
(
event_
,
compute_stream
));
PADDLE_ENFORCE
(
cudaStreamWaitEvent
(
callback_stream
,
event_
,
0
));
};
gc_
->
Add
(
tensors
,
callback_func
);
}
else
{
gc_
->
Add
(
tensors
);
}
}
bool
IsStreamGarabageCollector
()
const
{
return
dynamic_cast
<
const
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
)
!=
nullptr
;
}
const
Scope
*
scope_
;
platform
::
CUDADeviceContext
*
dev_ctx_
;
std
::
unordered_map
<
std
::
string
,
int
>
var_names_
;
GarbageCollector
<
Tensor
>
*
gc_
;
// not own
AtomicReferenceCountMap
*
ref_cnts_
;
// not own
cudaEvent_t
event_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_pass.cc
浏览文件 @
1b564bc4
...
...
@@ -14,187 +14,240 @@
#include <queue>
#include <string>
#include <type_traits>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_graph_view.h"
#include "paddle/fluid/framework/details/reference_count_pass.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
static
ComputationOpHandle
*
FindNextComputationOpHandle
(
VarHandle
*
var_in
)
{
std
::
queue
<
VarHandleBase
*>
queue
;
queue
.
push
(
var_in
);
do
{
auto
*
var
=
queue
.
front
();
queue
.
pop
();
for
(
auto
*
op
:
var
->
PendingOps
())
{
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
if
(
compute_op
!=
nullptr
&&
compute_op
->
GetPlace
()
==
var_in
->
place_
)
{
return
compute_op
;
// A functor to shrink/remove operators who depend on other operators in a set
class
ShrinkDepsOpFunctor
{
private:
enum
RelationShip
{
kSame
=
0
,
kNoDeps
=
1
,
kBefore
=
2
,
kAfter
=
3
};
public:
explicit
ShrinkDepsOpFunctor
(
const
std
::
vector
<
OpHandleBase
*>
&
all_ops
)
:
graph_
(
all_ops
)
{}
template
<
typename
OpSet
>
OpSet
operator
()(
const
OpSet
&
op_set
)
const
{
using
KeyType
=
typename
OpSet
::
key_type
;
static_assert
(
std
::
is_base_of
<
OpHandleBase
,
typename
std
::
remove_pointer
<
KeyType
>::
type
>::
value
,
"Key type of OpSet must be OpHandleBase, or derived of OpHandleBase"
);
if
(
op_set
.
size
()
<=
1
)
return
op_set
;
std
::
vector
<
OpHandleBase
*>
ops
(
op_set
.
begin
(),
op_set
.
end
());
OpSet
ret
;
auto
rels
=
GetRelations
(
ops
);
auto
not_before
=
[](
RelationShip
r
)
{
return
r
!=
kBefore
;
};
for
(
size_t
i
=
0
;
i
<
rels
.
size
();
++
i
)
{
if
(
std
::
all_of
(
rels
[
i
].
begin
(),
rels
[
i
].
end
(),
not_before
))
{
ret
.
emplace
(
static_cast
<
KeyType
>
(
ops
[
i
]));
}
for
(
auto
*
out_var
:
op
->
Outputs
())
{
queue
.
push
(
out_var
);
}
return
ret
;
}
private:
std
::
vector
<
std
::
vector
<
RelationShip
>>
GetRelations
(
const
std
::
vector
<
OpHandleBase
*>
&
ops
)
const
{
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
op_to_idx
;
for
(
size_t
i
=
0
;
i
<
ops
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
graph_
.
HasOp
(
ops
[
i
]),
"Op does not exist in graph"
);
op_to_idx
[
ops
[
i
]]
=
i
;
}
PADDLE_ENFORCE
(
op_to_idx
.
size
()
==
ops
.
size
(),
"Duplicate ops"
);
std
::
vector
<
std
::
vector
<
RelationShip
>>
ret
(
ops
.
size
());
for
(
auto
&
e
:
ret
)
{
e
.
assign
(
ops
.
size
(),
kSame
);
}
size_t
found_num
=
ops
.
size
();
size_t
total_num
=
ops
.
size
()
*
ops
.
size
();
auto
visitor
=
[
&
](
OpHandleBase
*
op
,
size_t
i
)
{
auto
it
=
op_to_idx
.
find
(
op
);
if
(
it
!=
op_to_idx
.
end
())
{
size_t
j
=
it
->
second
;
if
(
i
!=
j
&&
ret
[
i
][
j
]
==
kSame
)
{
ret
[
i
][
j
]
=
kBefore
;
ret
[
j
][
i
]
=
kAfter
;
found_num
+=
2
;
if
(
found_num
==
total_num
)
{
return
false
;
}
}
}
return
true
;
};
for
(
size_t
i
=
0
;
i
<
ops
.
size
();
++
i
)
{
auto
sub_visitor
=
[
&
,
i
](
OpHandleBase
*
op
)
{
return
visitor
(
op
,
i
);
};
if
(
!
graph_
.
VisitAllPendingOps
(
ops
[
i
],
sub_visitor
))
{
break
;
}
}
for
(
size_t
i
=
0
;
i
<
ops
.
size
();
++
i
)
{
for
(
size_t
j
=
i
+
1
;
j
<
ops
.
size
();
++
j
)
{
if
(
ret
[
i
][
j
]
!=
kSame
)
continue
;
ret
[
i
][
j
]
=
kNoDeps
;
ret
[
j
][
i
]
=
kNoDeps
;
}
}
return
ret
;
}
const
OpGraphView
graph_
;
};
/**
* Find the nearest downstream computation op handle. If the op is a
* computation op, just return itself.
*/
static
ComputationOpHandle
*
FindNextComputationOpHandleOrReturnItself
(
OpHandleBase
*
op
,
size_t
scope_idx
)
{
std
::
queue
<
OpHandleBase
*>
q
;
std
::
unordered_set
<
OpHandleBase
*>
visited
;
q
.
push
(
op
);
do
{
auto
*
op
=
q
.
front
();
q
.
pop
();
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
if
(
compute_op
!=
nullptr
&&
compute_op
->
GetScopeIdx
()
==
scope_idx
)
{
return
compute_op
;
}
for
(
auto
*
out_var
:
op
->
Outputs
())
{
for
(
auto
*
pending_op
:
out_var
->
PendingOps
())
{
if
(
visited
.
count
(
pending_op
))
continue
;
visited
.
insert
(
pending_op
);
}
}
}
while
(
!
q
ueue
.
empty
());
}
while
(
!
q
.
empty
());
return
nullptr
;
}
static
void
AddDependencyBetween
(
OpHandleBase
*
in
,
OpHandleBase
*
out
,
ir
::
Graph
*
graph
)
{
auto
it
=
std
::
find_if
(
in
->
Outputs
().
begin
(),
in
->
Outputs
().
end
(),
[](
VarHandleBase
*
var
)
{
return
dynamic_cast
<
DummyVarHandle
*>
(
var
)
!=
nullptr
;
});
if
(
it
!=
in
->
Outputs
().
end
())
{
out
->
AddInput
(
*
it
);
}
else
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
in
->
AddOutput
(
dep_var
);
out
->
AddInput
(
dep_var
);
static
std
::
unordered_set
<
ComputationOpHandle
*>
ExtractComputationOpFromLastLivedVar
(
VarHandle
*
var
,
size_t
scope_idx
,
const
ShrinkDepsOpFunctor
&
shrink_func
,
bool
*
ok
)
{
// stage one. Get last op for variable.
std
::
unordered_set
<
OpHandleBase
*>
candidates
;
{
if
(
var
->
PendingOps
().
empty
()
&&
var
->
GeneratedOp
())
{
// No operator depends on this variable. So the last operator is the op
// who generates this variable.
candidates
.
emplace
(
var
->
GeneratedOp
());
}
else
{
candidates
=
var
->
PendingOps
();
}
// No pending ops or generated op is nullptr
if
(
candidates
.
empty
())
{
*
ok
=
false
;
return
{};
}
}
// stage two. Try to cast them to computation op.
// return (*ok=false) when failed.
//
// The reason why we cannot make any types of op handle to be the last lived
// op is:
// some op handle may operate on many DeviceContext, however, our garbage
// collector can only wait one DeviceContext for now. So currently, we wait
// the nearest compute op.
std
::
unordered_set
<
ComputationOpHandle
*>
computation_op
;
{
for
(
auto
*
op
:
candidates
)
{
auto
*
compute_op
=
FindNextComputationOpHandleOrReturnItself
(
op
,
scope_idx
);
if
(
compute_op
==
nullptr
)
{
*
ok
=
false
;
return
{};
}
computation_op
.
emplace
(
compute_op
);
}
}
// stage three. Try to shrink computation op if they depend on each other.
// Get the smallest set of the most ops.
*
ok
=
true
;
return
shrink_func
(
computation_op
);
}
static
VarDesc
*
TryGetLatestVarDesc
(
const
std
::
vector
<
VarHandle
*>
&
vars
)
{
VarDesc
*
var_desc
=
nullptr
;
std
::
find_if
(
vars
.
rbegin
(),
vars
.
rend
(),
[
&
](
VarHandle
*
var_handle
)
->
bool
{
var_desc
=
var_handle
->
Node
()
->
Var
();
return
var_desc
!=
nullptr
;
});
return
var_desc
;
}
std
::
unique_ptr
<
ir
::
Graph
>
ReferenceCountPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
DeviceReferenceCountMap
>
(
kGlobalReferenceCount
);
auto
&
cur_ref_cnts
=
Get
<
AtomicDeviceReferenceCountMap
>
(
kCurReferenceCount
);
auto
&
gcs
=
Get
<
DeviceGarbageCollectorMap
>
(
kGarbageCollector
);
// It is not easy to find the right reference counts of varaibles in graph
// Step 1: Find all variables in computation ops
// Step 2: Find all variables in non-computation ops which refers to variables
// in computation ops
std
::
unordered_set
<
std
::
string
>
names
;
std
::
unordered_map
<
OpHandleBase
*
,
ReferenceCountOpHandle
*>
compute_ref_cnt_map
;
auto
get_ref_cnts_from_compute_op
=
[
&
](
OpHandleBase
*
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
std
::
vector
<
std
::
string
>
var_names_in_op
;
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
if
(
compute_op
==
nullptr
||
!
platform
::
is_gpu_place
(
compute_op
->
GetPlace
()))
return
var_names_in_op
;
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
compute_op
->
GetPlace
());
for
(
VarHandleBase
*
var_handle_base
:
vars
)
{
auto
*
var_handle
=
dynamic_cast
<
VarHandle
*>
(
var_handle_base
);
if
(
var_handle
==
nullptr
||
!
var_handle
->
Node
()
->
IsVar
())
continue
;
if
(
!
platform
::
is_gpu_place
(
var_handle
->
place_
)
||
boost
::
get
<
platform
::
CUDAPlace
>
(
var_handle
->
place_
)
!=
place
)
continue
;
auto
&
ref_cnts
=
Get
<
std
::
vector
<
ReferenceCountMap
>>
(
kGlobalReferenceCount
);
auto
&
last_live_ops_of_vars
=
Get
<
std
::
vector
<
LastLiveOpsOfVars
>>
(
kLastLiveOpsOfVars
);
PADDLE_ENFORCE
(
last_live_ops_of_vars
.
empty
()
&&
ref_cnts
.
empty
(),
"Last Live Ops and Reference Counts of vars should be "
"initialized at here."
);
VarDesc
*
var_desc
=
var_handle
->
Node
()
->
Var
();
auto
var_name
=
var_handle
->
Node
()
->
Name
();
const
auto
&
vars
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
);
// This is weird but there is really some variables without var_desc
// in computation_op
if
(
var_desc
==
nullptr
)
{
var_desc
=
compute_op
->
Node
()
->
Op
()
->
Block
()
->
FindVar
(
var_name
);
if
(
var_desc
==
nullptr
)
continue
;
last_live_ops_of_vars
.
resize
(
vars
.
size
());
ref_cnts
.
resize
(
vars
.
size
());
ShrinkDepsOpFunctor
shrink_func
(
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph
));
for
(
size_t
i
=
0
;
i
<
vars
.
size
();
++
i
)
{
for
(
auto
&
name_var_pair
:
vars
[
i
])
{
// Whether this variable can be reused or deleted? If not, we do not
// compute reference counts and dependencies.
VarDesc
*
var_desc
=
TryGetLatestVarDesc
(
name_var_pair
.
second
);
if
(
var_desc
==
nullptr
||
var_desc
->
Persistable
())
{
continue
;
}
if
(
var_desc
->
Persistable
())
continue
;
auto
var_type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
var_type
!=
proto
::
VarType
::
LOD_TENSOR
&&
var_type
!=
proto
::
VarType
::
SELECTED_ROWS
)
{
var_type
!=
proto
::
VarType
::
SELECTED_ROWS
&&
var_type
!=
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
// Var type cannot be deleted
continue
;
}
// compute op only runs in one device
if
(
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
else
(
*
ref_cnts
[
place
.
device
])[
var_name
]
=
1
;
bool
ok
;
auto
result
=
ExtractComputationOpFromLastLivedVar
(
name_var_pair
.
second
.
back
(),
i
,
shrink_func
,
&
ok
);
names
.
insert
(
var_name
);
var_names_in_op
.
push_back
(
var_name
);
}
return
var_names_in_op
;
};
auto
update_ref_cnts_from_non_compute_op
=
[
&
](
OpHandleBase
*
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
if
(
dynamic_cast
<
ComputationOpHandle
*>
(
op
)
!=
nullptr
)
return
;
for
(
VarHandleBase
*
var_handle_base
:
vars
)
{
auto
*
var_handle
=
dynamic_cast
<
VarHandle
*>
(
var_handle_base
);
if
(
var_handle
==
nullptr
||
!
var_handle
->
Node
()
->
IsVar
())
continue
;
auto
var_name
=
var_handle
->
Node
()
->
Name
();
auto
var_place
=
var_handle
->
place_
;
if
(
!
platform
::
is_gpu_place
(
var_place
))
continue
;
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
var_place
);
if
(
names
.
count
(
var_name
)
==
0
)
continue
;
if
(
ref_cnts
.
count
(
place
.
device
)
&&
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
{
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
auto
*
next_compute_op
=
FindNextComputationOpHandle
(
var_handle
);
if
(
next_compute_op
!=
nullptr
)
{
if
(
compute_ref_cnt_map
.
count
(
next_compute_op
))
{
compute_ref_cnt_map
[
next_compute_op
]
->
AddVar
(
var_name
);
VLOG
(
5
)
<<
"Add reference count of "
<<
var_name
<<
" to Operator "
<<
next_compute_op
->
Name
();
}
else
{
// Create new reference_count_op_handle
ir
::
Node
*
ref_cnt_node
=
graph
->
CreateEmptyNode
(
"reference_count"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
next_compute_op
->
GetScope
(),
place
,
{
var_name
},
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
AddDependencyBetween
(
next_compute_op
,
ref_cnt_handle
,
graph
.
get
());
compute_ref_cnt_map
[
next_compute_op
]
=
ref_cnt_handle
;
}
}
if
(
ok
)
{
auto
&
var_name
=
name_var_pair
.
first
;
PADDLE_ENFORCE
(
!
result
.
empty
(),
"Last living ops of %s cannot be empty"
,
var_name
);
ref_cnts
[
i
].
emplace
(
var_name
,
result
.
size
());
last_live_ops_of_vars
[
i
].
emplace
(
var_name
,
std
::
move
(
result
));
}
}
};
auto
all_ops
=
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph
);
for
(
auto
&
op
:
all_ops
)
{
auto
in_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Inputs
());
auto
out_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Outputs
());
if
(
in_var_names
.
empty
()
&&
out_var_names
.
empty
())
continue
;
in_var_names
.
insert
(
in_var_names
.
end
(),
out_var_names
.
begin
(),
out_var_names
.
end
());
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
compute_op
->
GetPlace
());
ir
::
Node
*
ref_cnt_node
=
graph
->
CreateEmptyNode
(
"reference_count"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
compute_op
->
GetScope
(),
place
,
in_var_names
,
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
AddDependencyBetween
(
compute_op
,
ref_cnt_handle
,
graph
.
get
());
compute_ref_cnt_map
[
compute_op
]
=
ref_cnt_handle
;
}
for
(
auto
&
op
:
all_ops
)
{
update_ref_cnts_from_non_compute_op
(
op
,
op
->
Inputs
());
update_ref_cnts_from_non_compute_op
(
op
,
op
->
Outputs
());
}
std
::
vector
<
OpHandleBase
*>
new_all_ops
;
new_all_ops
.
reserve
(
compute_ref_cnt_map
.
size
()
+
all_ops
.
size
());
for
(
auto
&
op
:
all_ops
)
{
new_all_ops
.
emplace_back
(
std
::
move
(
op
));
auto
it
=
compute_ref_cnt_map
.
find
(
new_all_ops
.
back
());
if
(
it
!=
compute_ref_cnt_map
.
end
())
{
// Add LeafNode to ReferenceCountOpHandle
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dummy_leaf
);
it
->
second
->
AddOutput
(
dummy_leaf
);
new_all_ops
.
emplace_back
(
std
::
move
(
it
->
second
));
}
}
all_ops
.
swap
(
new_all_ops
);
return
graph
;
}
...
...
@@ -205,5 +258,4 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
REGISTER_PASS
(
reference_count_pass
,
paddle
::
framework
::
details
::
ReferenceCountPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGlobalReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kCurReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGarbageCollector
);
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLastLiveOpsOfVars
);
paddle/fluid/framework/details/reference_count_pass.h
浏览文件 @
1b564bc4
...
...
@@ -14,7 +14,6 @@
#pragma once
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
...
...
@@ -22,10 +21,6 @@ namespace paddle {
namespace
framework
{
namespace
details
{
constexpr
char
kGlobalReferenceCount
[]
=
"reference_count"
;
constexpr
char
kCurReferenceCount
[]
=
"current_reference_count"
;
constexpr
char
kGarbageCollector
[]
=
"garbage_collector"
;
class
ReferenceCountPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
...
...
paddle/fluid/framework/details/reference_count_pass_helper.cc
0 → 100644
浏览文件 @
1b564bc4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_pass_helper.h
0 → 100644
浏览文件 @
1b564bc4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <atomic>
#include <map>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
ComputationOpHandle
;
using
ReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
size_t
>
;
using
AtomicReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
std
::
atomic
<
size_t
>>
;
using
GarbageCollectorMap
=
std
::
map
<
platform
::
Place
,
std
::
unique_ptr
<
GarbageCollector
>>
;
const
char
kGlobalReferenceCount
[]
=
"global_reference_count"
;
const
char
kRuntimeReferenceCount
[]
=
"runtime_reference_count"
;
const
char
kGarbageCollector
[]
=
"garbage_collector"
;
const
char
kAllPlaces
[]
=
"all_places"
;
using
LastLiveOpsOfVars
=
std
::
unordered_map
<
std
::
string
,
std
::
unordered_set
<
ComputationOpHandle
*>>
;
const
char
kLastLiveOpsOfVars
[]
=
"last_live_ops_of_var"
;
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
浏览文件 @
1b564bc4
...
...
@@ -18,9 +18,6 @@
#include <vector>
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/profiler.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -69,27 +66,12 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
platform
::
RecordEvent
e
(
"ScopeBufferedSSAGraphExecutorAfterRun"
,
nullptr
);
drop_scope_counter_
+=
1
;
#ifdef PADDLE_WITH_CUDA
const
std
::
string
gc_name
=
"garbage_collector"
;
DeviceGarbageCollectorMap
*
gc
=
Graph
().
Has
(
gc_name
)
?
&
(
Graph
().
Get
<
DeviceGarbageCollectorMap
>
(
gc_name
))
:
nullptr
;
#endif
if
(
!
fetch_tensors
.
empty
()
||
drop_scope_counter_
==
strategy_
.
num_iteration_per_drop_scope_
)
{
drop_scope_counter_
=
0
;
// Wait All computational streams
for
(
auto
p
:
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
#ifdef PADDLE_WITH_CUDA
if
(
gc
!=
nullptr
&&
platform
::
is_gpu_place
(
p
))
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
);
auto
&
gc_at_place
=
gc
->
at
(
gpu_place
.
device
);
gc_at_place
->
Wait
();
gc_at_place
->
Reset
();
}
#endif
}
for
(
auto
&
scope
:
local_scopes_
)
{
auto
&
local_scope
=
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
1b564bc4
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/executor.h"
#include <deque>
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
...
...
@@ -41,11 +42,43 @@ namespace {
int
kProgramId
=
-
1
;
}
// namespace
static
std
::
unordered_map
<
std
::
string
,
size_t
>
GetNonPersistableReferenceCounts
(
const
BlockDesc
&
block
,
const
std
::
vector
<
std
::
string
>&
skip_var_list
)
{
std
::
unordered_map
<
std
::
string
,
size_t
>
ref_cnts
;
std
::
unordered_set
<
std
::
string
>
skip_vars
(
skip_var_list
.
begin
(),
skip_var_list
.
end
());
auto
update_ref_cnts
=
[
&
](
OpDesc
*
op_desc
,
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
if
(
skip_vars
.
count
(
name
))
continue
;
auto
*
var_desc
=
block
.
FindVar
(
name
);
if
(
var_desc
==
nullptr
||
var_desc
->
Persistable
())
continue
;
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
&&
type
!=
proto
::
VarType
::
SELECTED_ROWS
&&
type
!=
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
continue
;
}
++
ref_cnts
[
name
];
}
}
};
for
(
auto
op_desc
:
block
.
AllOps
())
{
update_ref_cnts
(
op_desc
,
op_desc
->
Inputs
());
update_ref_cnts
(
op_desc
,
op_desc
->
Outputs
());
}
return
ref_cnts
;
}
ExecutorPrepareContext
::
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
)
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
)
:
prog_
(
prog
),
block_id_
(
block_id
)
{
if
(
GetEagerDeletionThreshold
()
>=
0
)
{
ref_cnts_
=
GetNonPersistableReferenceCount
<
int
>
(
prog_
,
block_id_
);
global_ref_cnts_
=
GetNonPersistableReferenceCounts
(
prog
.
Block
(
block_id
),
skip_ref_cnt_vars
);
}
}
...
...
@@ -53,28 +86,40 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
}
template
<
typename
RefCntMap
>
static
void
DeleteUnusedTensors
(
const
Scope
&
scope
,
const
OperatorBase
*
op
,
GarbageCollector
<
Tensor
>*
gc
,
RefCntMap
*
ref_cnts
)
{
std
::
unordered_set
<
Tensor
*>
erase_tensors
;
static
void
DeleteUnusedTensors
(
const
Scope
&
scope
,
const
OperatorBase
*
op
,
GarbageCollector
*
gc
,
std
::
unordered_map
<
std
::
string
,
size_t
>*
ref_cnts
)
{
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
garbages
;
auto
handler
=
[
&
](
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
auto
it
=
ref_cnts
->
find
(
name
);
if
(
it
==
ref_cnts
->
end
())
continue
;
if
((
it
->
second
)
--
==
1
)
{
auto
*
var
=
scope
.
FindVar
(
name
);
if
(
var
!=
nullptr
)
{
VLOG
(
10
)
<<
"Erase tensor
\'
"
<<
name
<<
"
\'
"
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
erase_tensors
.
insert
(
var
->
GetMutable
<
LoDTensor
>
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
erase_tensors
.
insert
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
());
}
if
(
--
(
it
->
second
)
!=
0
)
{
continue
;
}
auto
*
var
=
scope
.
FindVar
(
name
);
if
(
var
!=
nullptr
)
{
continue
;
}
VLOG
(
2
)
<<
"Erase variable "
<<
name
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
garbages
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
()
->
MoveMemoryHolder
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
garbages
.
emplace_back
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
()
->
MoveMemoryHolder
());
}
else
if
(
var
->
IsType
<
LoDTensorArray
>
())
{
auto
*
lod_tensor_arr
=
var
->
GetMutable
<
LoDTensorArray
>
();
for
(
auto
&
t
:
*
lod_tensor_arr
)
{
garbages
.
emplace_back
(
t
.
MoveMemoryHolder
());
}
}
else
{
PADDLE_THROW
(
"Type %s of %s is not supported eager deletion"
,
var
->
Type
().
name
(),
name
);
}
}
}
...
...
@@ -83,8 +128,8 @@ static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
handler
(
op
->
Inputs
());
handler
(
op
->
Outputs
());
if
(
!
erase_tensor
s
.
empty
())
{
gc
->
Add
(
erase_tensors
);
if
(
!
garbage
s
.
empty
())
{
gc
->
Add
(
std
::
move
(
garbages
)
);
}
}
...
...
@@ -325,9 +370,10 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
std
::
unique_ptr
<
ExecutorPrepareContext
>
Executor
::
Prepare
(
const
ProgramDesc
&
program
,
int
block_id
)
{
const
ProgramDesc
&
program
,
int
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
)
{
std
::
unique_ptr
<
ExecutorPrepareContext
>
ctx
(
new
ExecutorPrepareContext
(
program
,
block_id
));
new
ExecutorPrepareContext
(
program
,
block_id
,
skip_ref_cnt_vars
));
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
block_id
),
program
.
Size
());
auto
&
block
=
program
.
Block
(
block_id
);
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
...
...
@@ -338,16 +384,28 @@ std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
}
std
::
vector
<
std
::
shared_ptr
<
ExecutorPrepareContext
>>
Executor
::
Prepare
(
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
)
{
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>&
skip_ref_cnt_vars
)
{
PADDLE_ENFORCE
(
skip_ref_cnt_vars
.
empty
()
||
skip_ref_cnt_vars
.
size
()
==
block_ids
.
size
(),
"skip_ref_cnt_vars should be either empty or equals to block number %d"
,
block_ids
.
size
());
std
::
vector
<
std
::
shared_ptr
<
ExecutorPrepareContext
>>
result
;
size_t
idx
=
0
;
for
(
auto
&
bid
:
block_ids
)
{
auto
*
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
);
ExecutorPrepareContext
*
ctx
;
if
(
skip_ref_cnt_vars
.
empty
())
{
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
);
}
else
{
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
,
skip_ref_cnt_vars
[
idx
]);
}
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
bid
),
program
.
Size
());
auto
&
block
=
program
.
Block
(
bid
);
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
ctx
->
ops_
.
push_back
(
OpRegistry
::
CreateOp
(
*
op_desc
));
}
result
.
push_back
(
std
::
shared_ptr
<
ExecutorPrepareContext
>
(
ctx
));
++
idx
;
}
return
result
;
}
...
...
@@ -365,22 +423,23 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
std
::
unique_ptr
<
GarbageCollector
<
Tensor
>>
gc
;
// WhileOp would set keep_kids to true,
// because WhileGradOp needs the scopes created in WhileOp.
// Perhaps, we should not perform eager deletion in WhileOp
// The scopes and variables created by WhileOp would be deleted
// in WhileGradOp.
std
::
unique_ptr
<
GarbageCollector
>
gc
;
// skip while_op and while_grad_op temporarily
if
(
max_memory_size
>=
0
&&
!
keep_kids
)
{
ctx
->
ResetReferenceCount
();
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
gc
.
reset
(
new
DefaultStreamGarbageCollector
<
Tensor
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
max_memory_size
));
}
else
{
if
(
IsFastEagerDeletionModeEnabled
())
{
gc
.
reset
(
new
UnsafeFastGPUGarbageCollector
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
max_memory_size
));
}
else
{
gc
.
reset
(
new
DefaultStreamGarbageCollector
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
max_memory_size
));
}
}
else
if
(
platform
::
is_cpu_place
(
place_
))
{
#endif
gc
.
reset
(
new
CPUGarbageCollector
<
Tensor
>
(
boost
::
get
<
platform
::
CPUPlace
>
(
place_
),
max_memory_size
));
gc
.
reset
(
new
CPUGarbageCollector
(
boost
::
get
<
platform
::
CPUPlace
>
(
place_
),
max_memory_size
));
#ifdef PADDLE_WITH_CUDA
}
#endif
...
...
@@ -389,17 +448,13 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
for
(
auto
&
op
:
ctx
->
ops_
)
{
op
->
Run
(
*
local_scope
,
place_
);
if
(
gc
!=
nullptr
)
{
if
(
gc
)
{
DeleteUnusedTensors
(
*
local_scope
,
op
.
get
(),
gc
.
get
(),
&
(
ctx
->
cur
_ref_cnts_
));
&
(
ctx
->
runtime
_ref_cnts_
));
}
}
if
(
gc
!=
nullptr
)
{
gc
->
Wait
();
}
else
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
}
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
if
(
local_scope
!=
scope
)
{
scope
->
DeleteScope
(
local_scope
);
...
...
paddle/fluid/framework/executor.h
浏览文件 @
1b564bc4
...
...
@@ -27,52 +27,21 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
template
<
typename
T
>
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
const
ProgramDesc
&
prog
,
size_t
block_id
)
{
auto
&
block
=
prog
.
Block
(
block_id
);
std
::
unordered_map
<
std
::
string
,
T
>
ref_cnts
;
auto
update_ref_cnts
=
[
&
](
OpDesc
*
op_desc
,
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
auto
*
var_desc
=
block
.
FindVar
(
name
);
if
(
var_desc
==
nullptr
||
var_desc
->
Persistable
())
continue
;
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
&&
type
!=
proto
::
VarType
::
SELECTED_ROWS
)
{
continue
;
}
auto
it
=
ref_cnts
.
find
(
name
);
if
(
it
!=
ref_cnts
.
end
())
{
++
it
->
second
;
}
else
{
ref_cnts
[
name
]
=
1
;
}
}
}
};
for
(
auto
op_desc
:
block
.
AllOps
())
{
update_ref_cnts
(
op_desc
,
op_desc
->
Inputs
());
update_ref_cnts
(
op_desc
,
op_desc
->
Outputs
());
}
return
ref_cnts
;
}
struct
ExecutorPrepareContext
{
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
);
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
string
>
());
~
ExecutorPrepareContext
();
void
ResetReferenceCount
()
{
cur_ref_cnts_
=
ref_cnts_
;
}
void
ResetReferenceCount
()
{
runtime_ref_cnts_
=
global_
ref_cnts_
;
}
const
framework
::
ProgramDesc
&
prog_
;
size_t
block_id_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
std
::
unordered_map
<
std
::
string
,
int
>
ref_cnts_
;
std
::
unordered_map
<
std
::
string
,
int
>
cur
_ref_cnts_
;
std
::
unordered_map
<
std
::
string
,
size_t
>
global_
ref_cnts_
;
std
::
unordered_map
<
std
::
string
,
size_t
>
runtime
_ref_cnts_
;
};
class
Executor
{
...
...
@@ -108,10 +77,14 @@ class Executor {
const
std
::
string
&
fetch_holder_name
=
"fetch"
);
static
std
::
unique_ptr
<
ExecutorPrepareContext
>
Prepare
(
const
ProgramDesc
&
program
,
int
block_id
);
const
ProgramDesc
&
program
,
int
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
string
>
());
static
std
::
vector
<
std
::
shared_ptr
<
ExecutorPrepareContext
>>
Prepare
(
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
);
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
vector
<
std
::
string
>>
());
void
CreateVariables
(
const
ProgramDesc
&
pdesc
,
Scope
*
scope
,
int
block_id
);
...
...
paddle/fluid/framework/garbage_collector.cc
0 → 100644
浏览文件 @
1b564bc4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
#include "paddle/fluid/framework/garbage_collector.h"
namespace
paddle
{
namespace
framework
{
GarbageCollector
::
GarbageCollector
(
const
platform
::
Place
&
place
,
size_t
max_memory_size
)
:
max_memory_size_
((
std
::
max
)(
max_memory_size
,
static_cast
<
size_t
>
(
1
)))
{
garbages_
.
reset
(
new
GarbageQueue
());
dev_ctx_
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
}
CPUGarbageCollector
::
CPUGarbageCollector
(
const
platform
::
CPUPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
(
place
,
max_memory_size
)
{}
void
CPUGarbageCollector
::
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
callback
();
}
#ifdef PADDLE_WITH_CUDA
UnsafeFastGPUGarbageCollector
::
UnsafeFastGPUGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
(
place
,
max_memory_size
)
{}
void
UnsafeFastGPUGarbageCollector
::
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
callback
();
}
DefaultStreamGarbageCollector
::
DefaultStreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
(
place
,
max_memory_size
)
{}
void
DefaultStreamGarbageCollector
::
Wait
()
const
{
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
WaitStreamCallback
();
}
void
DefaultStreamGarbageCollector
::
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
AddStreamCallback
(
callback
);
}
StreamGarbageCollector
::
StreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
(
place
,
max_memory_size
)
{
platform
::
CUDADeviceGuard
guard
(
place
.
device
);
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
callback_manager_
.
reset
(
new
platform
::
StreamCallbackManager
(
stream_
));
}
StreamGarbageCollector
::~
StreamGarbageCollector
()
{
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
this
->
dev_ctx_
->
GetPlace
());
platform
::
CUDADeviceGuard
guard
(
place
.
device
);
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
}
cudaStream_t
StreamGarbageCollector
::
stream
()
const
{
return
stream_
;
}
void
StreamGarbageCollector
::
Wait
()
const
{
callback_manager_
->
Wait
();
}
void
StreamGarbageCollector
::
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
callback_manager_
->
AddCallback
(
callback
);
}
#endif
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/garbage_collector.h
浏览文件 @
1b564bc4
...
...
@@ -14,7 +14,6 @@
#pragma once
#include <algorithm>
#include <deque>
#include <functional>
#include <memory>
...
...
@@ -24,134 +23,74 @@
namespace
paddle
{
namespace
framework
{
// T should have memory_size() and clear() method
template
<
typename
T
>
class
GarbageCollector
{
public:
GarbageCollector
(
const
platform
::
Place
&
place
,
size_t
max_memory_size
)
:
max_memory_size_
((
std
::
max
)(
max_memory_size
,
static_cast
<
size_t
>
(
1
)))
{
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
dev_ctx_
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
}
using
GarbageQueue
=
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
;
virtual
~
GarbageCollector
()
{}
GarbageCollector
(
const
platform
::
Place
&
place
,
size_t
max_memory_size
);
void
Reset
()
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
cur_memory_size_
=
0
;
}
virtual
~
GarbageCollector
()
=
default
;
virtual
void
Wait
()
const
{}
template
<
typename
Container
>
void
Add
(
const
Container
&
objs
)
{
Add
(
objs
,
[]()
{});
}
void
Add
(
Container
&&
objs
);
template
<
typename
Container
,
typename
Callback
>
void
Add
(
const
Container
&
objs
,
Callback
&&
callback
)
{
std
::
shared_ptr
<
std
::
deque
<
T
*>>
clear_deque
;
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
for
(
auto
*
obj
:
objs
)
{
garbages_
->
push_back
(
obj
);
cur_memory_size_
+=
obj
->
memory_size
();
}
if
(
cur_memory_size_
>=
max_memory_size_
)
{
cur_memory_size_
=
0
;
clear_deque
=
garbages_
;
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
}
}
if
(
clear_deque
!=
nullptr
)
{
callback
();
ClearCallback
([
=
]()
{
for
(
auto
*
obj
:
*
clear_deque
)
obj
->
clear
();
});
}
}
virtual
void
Wait
()
const
{}
void
Add
(
Container
&&
objs
,
Callback
&&
callback
);
protected:
virtual
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
=
0
;
platform
::
DeviceContext
*
dev_ctx_
;
std
::
shared_ptr
<
std
::
deque
<
T
*>
>
garbages_
;
std
::
unique_ptr
<
GarbageQueue
>
garbages_
;
mutable
std
::
mutex
mutex_
;
const
size_t
max_memory_size_
;
size_t
cur_memory_size_
=
0
;
size_t
cur_memory_size_
{
0
}
;
};
template
<
typename
T
>
class
CPUGarbageCollector
:
public
GarbageCollector
<
T
>
{
class
CPUGarbageCollector
:
public
GarbageCollector
{
public:
CPUGarbageCollector
(
const
platform
::
CPUPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{}
CPUGarbageCollector
(
const
platform
::
CPUPlace
&
place
,
size_t
max_memory_size
);
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
callback
();
}
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
;
};
#ifdef PADDLE_WITH_CUDA
template
<
typename
T
>
class
DefaultStreamGarbageCollector
:
public
GarbageCollector
<
T
>
{
class
UnsafeFastGPUGarbageCollector
:
public
GarbageCollector
{
public:
DefaultStreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{}
UnsafeFastGPUGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
);
cudaStream_t
stream
()
const
{
return
static_cast
<
const
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
stream
();
}
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
;
};
void
Wait
()
const
override
{
this
->
dev_ctx_
->
Wait
();
static_cast
<
const
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
WaitStreamCallback
();
}
class
DefaultStreamGarbageCollector
:
public
GarbageCollector
{
public:
DefaultStreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
);
void
Wait
()
const
override
;
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
AddStreamCallback
(
callback
);
}
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
;
};
template
<
typename
T
>
class
StreamGarbageCollector
:
public
GarbageCollector
<
T
>
{
class
StreamGarbageCollector
:
public
GarbageCollector
{
public:
StreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
callback_manager_
.
reset
(
new
platform
::
StreamCallbackManager
(
stream_
));
}
size_t
max_memory_size
);
~
StreamGarbageCollector
()
{
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
this
->
dev_ctx_
->
GetPlace
());
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
}
~
StreamGarbageCollector
();
void
Wait
()
const
override
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
std
::
lock_guard
<
std
::
mutex
>
guard
(
this
->
mutex_
);
callback_manager_
->
Wait
();
}
void
Wait
()
const
override
;
cudaStream_t
stream
()
const
{
return
stream_
;
}
cudaStream_t
stream
()
const
;
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
this
->
mutex_
);
callback_manager_
->
AddCallback
(
callback
);
}
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
;
private:
cudaStream_t
stream_
;
...
...
@@ -159,5 +98,33 @@ class StreamGarbageCollector : public GarbageCollector<T> {
};
#endif
template
<
typename
Container
>
void
GarbageCollector
::
Add
(
Container
&&
objs
)
{
Add
(
std
::
forward
<
Container
>
(
objs
),
[]()
{});
}
template
<
typename
Container
,
typename
Callback
>
void
GarbageCollector
::
Add
(
Container
&&
objs
,
Callback
&&
callback
)
{
GarbageQueue
*
garbage_queue
=
nullptr
;
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
for
(
auto
&
obj
:
objs
)
{
if
(
!
obj
)
continue
;
cur_memory_size_
+=
obj
->
size
();
garbages_
->
push_back
(
std
::
move
(
obj
));
}
if
(
cur_memory_size_
>=
max_memory_size_
)
{
cur_memory_size_
=
0
;
garbage_queue
=
garbages_
.
release
();
garbages_
.
reset
(
new
GarbageQueue
());
}
}
if
(
garbage_queue
)
{
callback
();
ClearCallback
([
garbage_queue
]()
{
delete
garbage_queue
;
});
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph.h
浏览文件 @
1b564bc4
...
...
@@ -73,14 +73,21 @@ class Graph {
}
bool
Has
(
const
std
::
string
&
attr_name
)
const
{
return
attrs_
.
find
(
attr_name
)
!=
attrs_
.
end
()
;
return
attrs_
.
count
(
attr_name
)
>
0
;
}
template
<
typename
AttrType
>
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
PADDLE_ENFORCE
(
Has
(
attr_name
),
"%s attr not registered for graph."
,
attr_name
);
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
try
{
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
}
catch
(
boost
::
bad_any_cast
&
)
{
PADDLE_THROW
(
"Invalid attribute type of %s error, expected: %s, actual: %s"
,
attr_name
,
typeid
(
AttrType
*
).
name
(),
attrs_
.
at
(
attr_name
).
type
().
name
());
}
}
template
<
typename
AttrType
>
...
...
paddle/fluid/framework/ir/pass.h
浏览文件 @
1b564bc4
...
...
@@ -51,11 +51,18 @@ class Pass {
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
PADDLE_ENFORCE
(
attrs_
.
find
(
attr_name
)
!=
attrs_
.
end
(),
"%s attr not registered for pass."
,
attr_name
);
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
try
{
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
}
catch
(
boost
::
bad_any_cast
&
)
{
PADDLE_THROW
(
"Invalid attribute type of %s error, expected: %s, actual: %s"
,
attr_name
,
typeid
(
AttrType
*
).
name
(),
attrs_
.
at
(
attr_name
).
type
().
name
());
}
}
bool
Has
(
const
std
::
string
&
attr_name
)
const
{
return
attrs_
.
find
(
attr_name
)
!=
attrs_
.
end
()
;
return
attrs_
.
count
(
attr_name
)
>
0
;
}
void
Erase
(
const
std
::
string
&
attr_name
)
{
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
1b564bc4
...
...
@@ -879,6 +879,8 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
t
=
&
(
var
->
Get
<
SelectedRows
>
().
value
());
}
if
(
t
!=
nullptr
)
{
PADDLE_ENFORCE
(
t
->
IsInitialized
(),
"Input %s is not initialized: %s"
,
ipt_name
,
DebugString
());
int
tmp
=
static_cast
<
int
>
(
ToDataType
(
t
->
type
()));
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
1b564bc4
...
...
@@ -26,6 +26,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -72,6 +73,26 @@ class ParallelExecutorPrivate {
}
}
}
std
::
unique_ptr
<
ir
::
Graph
>
PrepareGCAndRefCnts
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
,
size_t
max_memory_size
);
inline
bool
HasGarbageCollectors
()
const
{
return
!
gcs_
.
empty
();
}
void
ResetRuntimeReferenceCount
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
)
{
for
(
size_t
i
=
0
;
i
<
runtime_ref_cnts_
.
size
();
++
i
)
{
for
(
auto
&
pair
:
global_ref_cnts_
[
i
])
{
runtime_ref_cnts_
[
i
][
pair
.
first
]
=
pair
.
second
;
}
for
(
auto
&
fetch_name
:
fetch_tensors
)
{
runtime_ref_cnts_
[
i
].
erase
(
fetch_name
);
}
runtime_ref_cnts_
[
i
].
erase
(
fetched_var_name
);
}
}
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
Scope
*>
local_scopes_
;
Scope
*
global_scope_
;
// not owned
...
...
@@ -83,8 +104,76 @@ class ParallelExecutorPrivate {
bool
own_local_scope_
;
bool
use_cuda_
;
bool
use_all_reduce_
;
// global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
// then keeps unchanged
// Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
std
::
vector
<
details
::
ReferenceCountMap
>
global_ref_cnts_
;
std
::
vector
<
details
::
AtomicReferenceCountMap
>
runtime_ref_cnts_
;
details
::
GarbageCollectorMap
gcs_
;
};
std
::
unique_ptr
<
ir
::
Graph
>
ParallelExecutorPrivate
::
PrepareGCAndRefCnts
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
,
size_t
max_memory_size
)
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
place
=
places_
[
i
];
if
(
gcs_
.
count
(
place
)
>
0
)
{
continue
;
}
std
::
unique_ptr
<
GarbageCollector
>
gc
;
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place
))
{
if
(
IsFastEagerDeletionModeEnabled
())
{
gc
.
reset
(
new
UnsafeFastGPUGarbageCollector
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
max_memory_size
));
}
else
{
gc
.
reset
(
new
StreamGarbageCollector
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
max_memory_size
));
}
VLOG
(
10
)
<<
"Created "
<<
i
<<
"-th GarbageCollector at "
<<
place
;
}
else
{
#endif
if
(
platform
::
is_cpu_place
(
place
))
{
gc
.
reset
(
new
CPUGarbageCollector
(
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
max_memory_size
));
VLOG
(
10
)
<<
"Created GarbageCollector at "
<<
place
;
}
else
{
PADDLE_THROW
(
"Unsupported place for garbage collection"
);
}
#ifdef PADDLE_WITH_CUDA
}
#endif
gcs_
.
emplace
(
place
,
std
::
move
(
gc
));
}
if
(
!
gcs_
.
empty
())
{
std
::
vector
<
details
::
LastLiveOpsOfVars
>
last_live_ops_of_vars
;
auto
ref_cnt_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"reference_count_pass"
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGlobalReferenceCount
,
&
global_ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kLastLiveOpsOfVars
,
&
last_live_ops_of_vars
);
graph
=
ref_cnt_pass
->
Apply
(
std
::
move
(
graph
));
VLOG
(
10
)
<<
"ReferenceCountPass Applied"
;
auto
eager_deletion_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"eager_deletion_pass"
);
eager_deletion_pass
->
SetNotOwned
(
details
::
kRuntimeReferenceCount
,
&
runtime_ref_cnts_
);
eager_deletion_pass
->
SetNotOwned
(
details
::
kGarbageCollector
,
&
gcs_
);
eager_deletion_pass
->
SetNotOwned
(
details
::
kLastLiveOpsOfVars
,
&
last_live_ops_of_vars
);
eager_deletion_pass
->
SetNotOwned
(
details
::
kAllPlaces
,
&
places_
);
graph
=
eager_deletion_pass
->
Apply
(
std
::
move
(
graph
));
VLOG
(
10
)
<<
"EagerDeletionPass Applied"
;
}
return
graph
;
}
std
::
vector
<
Scope
*>
&
ParallelExecutor
::
GetLocalScopes
()
{
return
member_
->
local_scopes_
;
}
...
...
@@ -151,36 +240,18 @@ ParallelExecutor::ParallelExecutor(
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
for
(
auto
&
place
:
member_
->
places_
)
{
if
(
!
platform
::
is_gpu_place
(
place
))
continue
;
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
if
(
gcs_
[
gpu_place
.
device
]
==
nullptr
)
{
ref_cnts_
[
gpu_place
.
device
].
reset
(
new
details
::
ReferenceCountMap
());
cur_ref_cnts_
[
gpu_place
.
device
].
reset
(
new
details
::
AtomicReferenceCountMap
());
gcs_
[
gpu_place
.
device
].
reset
(
new
StreamGarbageCollector
<
Tensor
>
(
gpu_place
,
max_memory_size
));
}
}
if
(
!
gcs_
.
empty
())
{
auto
ref_cnt_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"reference_count_pass"
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGlobalReferenceCount
,
&
ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kCurReferenceCount
,
&
cur_ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGarbageCollector
,
&
gcs_
);
graph
=
ref_cnt_pass
->
Apply
(
std
::
move
(
graph
));
graph
->
SetNotOwned
(
"garbage_collector"
,
&
gcs_
);
}
}
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
);
#endif
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graph
),
static_cast
<
size_t
>
(
max_memory_size
));
}
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
...
...
@@ -300,18 +371,9 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
#endif
platform
::
RecordBlock
b
(
0
);
#ifdef PADDLE_WITH_CUDA
if
(
!
gcs_
.
empty
())
{
ResetReferenceCount
();
for
(
auto
&
pair
:
cur_ref_cnts_
)
{
auto
&
name_map
=
*
(
pair
.
second
);
for
(
auto
&
fetch_name
:
fetch_tensors
)
{
name_map
.
erase
(
fetch_name
);
}
name_map
.
erase
(
fetched_var_name
);
}
if
(
member_
->
HasGarbageCollectors
())
{
member_
->
ResetRuntimeReferenceCount
(
fetch_tensors
,
fetched_var_name
);
}
#endif
auto
fetch_data
=
member_
->
executor_
->
Run
(
fetch_tensors
);
*
member_
->
global_scope_
->
Var
(
fetched_var_name
)
->
GetMutable
<
FeedFetchList
>
()
=
fetch_data
;
...
...
@@ -355,13 +417,11 @@ ParallelExecutor::~ParallelExecutor() {
for
(
auto
&
p
:
member_
->
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
}
// member_ must be destructed before gcs_ since the destructor of
// ReferenceCountOpHandle use raw pointers of gcs_ inside.
member_
.
reset
();
delete
member_
;
}
}
// namespace framework
}
// namespace paddle
#ifdef PADDLE_WITH_CUDA
USE_PASS
(
reference_count_pass
);
#endif
USE_PASS
(
eager_deletion_pass
);
paddle/fluid/framework/parallel_executor.h
浏览文件 @
1b564bc4
...
...
@@ -14,7 +14,6 @@ limitations under the License. */
#pragma once
#include <atomic>
#include <string>
#include <unordered_map>
#include <unordered_set>
...
...
@@ -29,10 +28,6 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_pass.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -75,24 +70,7 @@ class ParallelExecutor {
private:
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
std
::
unique_ptr
<
ParallelExecutorPrivate
>
member_
;
#ifdef PADDLE_WITH_CUDA
// ref_cnts_ is only initialized when ParallelExecutor constructs, and then
// keeps unchanged
// Before each iteration, cur_ref_cnts_ is reset to ref_cnts_
details
::
DeviceReferenceCountMap
ref_cnts_
;
details
::
AtomicDeviceReferenceCountMap
cur_ref_cnts_
;
details
::
DeviceGarbageCollectorMap
gcs_
;
void
ResetReferenceCount
()
{
for
(
auto
&
pair1
:
ref_cnts_
)
{
for
(
auto
&
pair2
:
*
(
pair1
.
second
))
{
(
*
(
cur_ref_cnts_
[
pair1
.
first
]))[
pair2
.
first
]
=
pair2
.
second
;
}
}
}
#endif
ParallelExecutorPrivate
*
member_
;
};
}
// namespace framework
...
...
paddle/fluid/framework/scope.cc
浏览文件 @
1b564bc4
...
...
@@ -38,6 +38,10 @@ DEFINE_double(
"Memory size threshold (GB) when the garbage collector clear tensors."
"Disabled when this value is less than 0"
);
DEFINE_bool
(
fast_eager_deletion_mode
,
false
,
"Fast eager deletion mode. If enabled, memory would release "
"immediately without waiting GPU kernel ends."
);
// When in inference scenario, the scopes will not be written by two threads in
// a mean time, but a scope may be read by multiple threads concurrently, and
// the mutex will cause serious performance issue.
...
...
@@ -58,6 +62,8 @@ int64_t GetEagerDeletionThreshold() {
(
static_cast
<
int64_t
>
(
1
)
<<
30
));
}
bool
IsFastEagerDeletionModeEnabled
()
{
return
FLAGS_fast_eager_deletion_mode
;
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
...
...
paddle/fluid/framework/scope.h
浏览文件 @
1b564bc4
...
...
@@ -27,6 +27,7 @@ namespace paddle {
namespace
framework
{
int64_t
GetEagerDeletionThreshold
();
bool
IsFastEagerDeletionModeEnabled
();
class
Scope
;
...
...
paddle/fluid/framework/tensor.h
浏览文件 @
1b564bc4
...
...
@@ -158,6 +158,10 @@ class Tensor {
const
std
::
shared_ptr
<
memory
::
Allocation
>&
Holder
()
const
{
return
holder_
;
}
size_t
offset
()
const
{
return
offset_
;
}
std
::
shared_ptr
<
memory
::
Allocation
>
MoveMemoryHolder
()
{
return
std
::
move
(
holder_
);
}
private:
/*! holds the memory block if allocated. */
std
::
shared_ptr
<
memory
::
Allocation
>
holder_
;
...
...
paddle/fluid/operators/controlflow/while_op.cc
浏览文件 @
1b564bc4
...
...
@@ -32,6 +32,20 @@ static constexpr char kStepScopes[] = "StepScopes";
static
constexpr
char
kX
[]
=
"X"
;
static
constexpr
char
kXGRAD
[]
=
"X@GRAD"
;
static
constexpr
char
kOutputs
[]
=
"Out"
;
static
constexpr
char
kSkipEagerDeletionVars
[]
=
"skip_eager_deletion_vars"
;
namespace
{
// NOLINT
static
std
::
string
GetSkipEagerDeletionVarsDebugString
(
const
std
::
vector
<
std
::
string
>
&
vars
)
{
std
::
string
str
=
"Skip "
+
std
::
to_string
(
vars
.
size
())
+
" var(s) in eager deletion mode: "
;
for
(
auto
&
var
:
vars
)
{
str
.
append
(
var
);
str
.
push_back
(
' '
);
}
return
str
;
}
}
// NOLINT
class
WhileOp
:
public
framework
::
OperatorBase
{
public:
...
...
@@ -59,7 +73,10 @@ class WhileOp : public framework::OperatorBase {
"Condition of while op must in CPU memory."
);
bool
is_test
=
Attr
<
bool
>
(
"is_test"
);
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
());
auto
&
skip_vars
=
Attr
<
std
::
vector
<
std
::
string
>>
(
kSkipEagerDeletionVars
);
VLOG
(
2
)
<<
GetSkipEagerDeletionVarsDebugString
(
skip_vars
);
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
(),
skip_vars
);
while
(
cond
.
data
<
bool
>
()[
0
])
{
auto
&
current_scope
=
scope
.
NewScope
();
step_scopes
->
push_back
(
&
current_scope
);
...
...
@@ -96,6 +113,10 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
kSkipEagerDeletionVars
,
"Vars that would skip eager deletion."
"Users should not set this manually."
)
.
SetDefault
(
std
::
vector
<
std
::
string
>
());
AddComment
(
R"DOC(
)DOC"
);
}
...
...
@@ -119,7 +140,10 @@ class WhileGradOp : public framework::OperatorBase {
framework
::
Executor
executor
(
dev_place
);
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
kStepBlock
);
auto
*
program
=
block
->
Program
();
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
());
auto
&
skip_vars
=
Attr
<
std
::
vector
<
std
::
string
>>
(
kSkipEagerDeletionVars
);
VLOG
(
2
)
<<
GetSkipEagerDeletionVarsDebugString
(
skip_vars
);
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
(),
skip_vars
);
auto
*
step_scopes
=
scope
.
FindVar
(
Input
(
kStepScopes
))
->
GetMutable
<
StepScopeVar
>
();
...
...
@@ -341,6 +365,8 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
// while operator could be renamed.
while_grad
->
SetAttr
(
"original_output_grad"
,
output_grads_list
);
while_grad
->
SetAttr
(
kSkipEagerDeletionVars
,
std
::
vector
<
std
::
string
>
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
while_grad
);
}
};
...
...
paddle/fluid/operators/reader/ctr_reader.h
浏览文件 @
1b564bc4
...
...
@@ -16,6 +16,7 @@
#include <sys/time.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <cstdlib>
#include <fstream>
...
...
@@ -55,8 +56,7 @@ class CTRReader : public framework::FileReader {
PADDLE_ENFORCE_GT
(
thread_num
,
0
,
"thread num should be larger then 0!"
);
PADDLE_ENFORCE
(
queue
!=
nullptr
,
"LoDTensorBlockingQueue must not be null"
);
PADDLE_ENFORCE_GT
(
file_list
.
size
(),
0
,
"file list should not be empty"
);
thread_num_
=
file_list_
.
size
()
>
thread_num
?
thread_num
:
file_list_
.
size
();
thread_num_
=
std
::
min
<
size_t
>
(
file_list_
.
size
(),
thread_num
);
queue_
=
queue
;
SplitFiles
();
for
(
size_t
i
=
0
;
i
<
thread_num_
;
++
i
)
{
...
...
@@ -95,10 +95,10 @@ class CTRReader : public framework::FileReader {
queue_
->
ReOpen
();
VLOG
(
3
)
<<
"reopen success"
;
VLOG
(
3
)
<<
"thread_num "
<<
thread_num_
;
for
(
in
t
thread_id
=
0
;
thread_id
<
thread_num_
;
thread_id
++
)
{
read_threads_
.
emplace_back
(
new
std
::
thread
(
std
::
bind
(
&
ReadThread
,
file_groups_
[
thread_id
],
slots_
,
batch_size_
,
thread_id
,
&
read_thread_status_
,
queue_
)));
for
(
size_
t
thread_id
=
0
;
thread_id
<
thread_num_
;
thread_id
++
)
{
read_threads_
.
emplace_back
(
new
std
::
thread
(
std
::
bind
(
&
ReadThread
,
file_groups_
[
thread_id
],
slots_
,
batch_size_
,
static_cast
<
int
>
(
thread_id
)
,
&
read_thread_status_
,
queue_
)));
}
monitor_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
MonitorThread
,
&
read_thread_status_
,
queue_
)));
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
1b564bc4
...
...
@@ -56,9 +56,16 @@ ELSE()
set
(
MKLDNN_CTX_DEPS
)
ENDIF
()
nv_library
(
stream_callback_manager SRCS stream_callback_manager.cc DEPS simple_threadpool enforce
)
IF
(
WITH_GPU
)
set
(
STREAM_CALLBACK_DEPS stream_callback_manager
)
ELSE
()
set
(
STREAM_CALLBACK_DEPS
)
ENDIF
()
# memcpy depends on device_context, here add deps individually for
# avoiding cycle dependencies
cc_library
(
device_context SRCS device_context.cc init.cc DEPS simple_threadpool malloc
cc_library
(
device_context SRCS device_context.cc init.cc DEPS simple_threadpool malloc
${
STREAM_CALLBACK_DEPS
}
place eigen3 stringpiece cpu_helper cpu_info framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
)
nv_test
(
device_context_test SRCS device_context_test.cu DEPS device_context gpu_info
)
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
1b564bc4
...
...
@@ -222,14 +222,10 @@ class CUDADeviceContext : public DeviceContext {
template
<
typename
Callback
>
void
AddStreamCallback
(
Callback
&&
callback
)
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
callback_mtx_
);
callback_manager_
->
AddCallback
(
callback
);
}
void
WaitStreamCallback
()
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
callback_mtx_
);
callback_manager_
->
Wait
();
}
void
WaitStreamCallback
()
const
{
callback_manager_
->
Wait
();
}
#if CUDA_VERSION >= 9000
/*! \brief CublasCall may need to change cublas's config,
...
...
@@ -260,9 +256,7 @@ class CUDADeviceContext : public DeviceContext {
mutable
std
::
mutex
mtx_
;
// This lock is only used by callback
// If we use mtx_ for StreamCallbackManager, deadlock may occur sometimes
mutable
std
::
mutex
callback_mtx_
;
// StreamCallbackManager is thread-safe
std
::
unique_ptr
<
StreamCallbackManager
>
callback_manager_
;
mutable
std
::
mutex
cublas_mtx_
;
...
...
paddle/fluid/platform/stream_callback_manager.cc
0 → 100644
浏览文件 @
1b564bc4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/platform/stream_callback_manager.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
#if CUDA_VERSION >= 10000
static
void
CUDART_CB
StreamCallbackFunc
(
void
*
user_data
);
#else
static
void
CUDART_CB
StreamCallbackFunc
(
cudaStream_t
stream
,
cudaError_t
status
,
void
*
user_data
)
#endif
{
std
::
unique_ptr
<
std
::
function
<
void
()
>>
func
(
reinterpret_cast
<
std
::
function
<
void
()
>
*>
(
user_data
));
(
*
func
)();
}
StreamCallbackManager
::
StreamCallbackManager
(
const
cudaStream_t
stream
)
:
stream_
(
stream
),
thread_pool_
(
1
)
{}
void
StreamCallbackManager
::
AddCallback
(
std
::
function
<
void
()
>
callback
)
const
{
auto
*
callback_func
=
new
std
::
function
<
void
()
>
(
std
::
move
(
callback
));
auto
*
func
=
new
std
::
function
<
void
()
>
([
this
,
callback_func
]
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mtx_
);
last_future_
=
thread_pool_
.
enqueue
([
callback_func
]
{
std
::
unique_ptr
<
std
::
function
<
void
()
>>
releaser
(
callback_func
);
(
*
callback_func
)();
});
});
#if CUDA_VERSION >= 10000
PADDLE_ENFORCE
(
cudaLaunchHostFunc
(
stream_
,
StreamCallbackFunc
,
func
));
#else
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
stream_
,
StreamCallbackFunc
,
func
,
0
));
#endif
}
void
StreamCallbackManager
::
Wait
()
const
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mtx_
);
if
(
last_future_
.
valid
())
{
last_future_
.
wait
();
}
}
}
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/stream_callback_manager.h
浏览文件 @
1b564bc4
...
...
@@ -18,67 +18,32 @@
#include <cuda.h>
#include <cuda_runtime.h>
#include <functional>
#include <future> // NOLINT
#include <memory>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
class
StreamCallbackManager
;
struct
StreamCallbackContext
{
template
<
typename
Callback
>
inline
StreamCallbackContext
(
const
StreamCallbackManager
*
manager
,
Callback
&&
callback
)
:
manager_
(
manager
),
callback_
(
callback
)
{}
const
StreamCallbackManager
*
manager_
;
// do not own
std
::
function
<
void
()
>
callback_
;
};
// NOTE(zjl): clean StreamCallbackManager to make compilation faster
// Make StreamCallbackManager thread-safe
class
StreamCallbackManager
{
public:
explicit
inline
StreamCallbackManager
(
cudaStream_t
stream
=
nullptr
)
:
stream_
(
stream
),
thread_pool_
(
new
ThreadPool
(
1
))
{}
explicit
StreamCallbackManager
(
const
cudaStream_t
stream
);
~
StreamCallbackManager
()
=
default
;
template
<
typename
Callback
>
inline
void
AddCallback
(
Callback
&&
callback
)
const
{
auto
*
stream_callback_context
=
new
StreamCallbackContext
(
this
,
std
::
forward
<
Callback
>
(
callback
));
#if CUDA_VERSION >= 10000
PADDLE_ENFORCE
(
cudaLaunchHostFunc
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
));
// NOLINT
#else
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
));
// NOLINT
#endif
}
void
AddCallback
(
std
::
function
<
void
()
>
callback
)
const
;
void
Wait
()
const
{
thread_pool_
.
reset
(
new
ThreadPool
(
1
));
}
void
Wait
()
const
;
private:
const
cudaStream_t
stream_
;
mutable
std
::
unique_ptr
<
ThreadPool
>
thread_pool_
;
// cudaStreamCallback cannot call CUDA API inside, so we have to use
// thread_pool here
#if CUDA_VERSION >= 10000
static
void
CUDART_CB
StreamCallbackFunc
(
void
*
user_data
)
#else
static
void
CUDART_CB
StreamCallbackFunc
(
cudaStream_t
stream
,
cudaError_t
status
,
void
*
user_data
)
#endif
{
auto
*
callback_context_ptr
=
reinterpret_cast
<
StreamCallbackContext
*>
(
user_data
);
callback_context_ptr
->
manager_
->
thread_pool_
->
enqueue
([
=
]()
{
std
::
unique_ptr
<
StreamCallbackContext
>
callback_context
(
callback_context_ptr
);
callback_context
->
callback_
();
});
}
mutable
::
ThreadPool
thread_pool_
;
mutable
std
::
mutex
mtx_
;
mutable
std
::
future
<
void
>
last_future_
;
};
}
// namespace platform
...
...
paddle/fluid/pybind/tensor_py.h
浏览文件 @
1b564bc4
...
...
@@ -162,7 +162,7 @@ void PyCPUTensorSetFromArray(
paddle
::
platform
::
CPUPlace
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -182,7 +182,7 @@ inline void PyCPUTensorSetFromArray(
paddle
::
platform
::
CPUPlace
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
int
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -200,7 +200,7 @@ void PyCUDATensorSetFromArray(
paddle
::
platform
::
CUDAPlace
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -221,7 +221,7 @@ inline void PyCUDATensorSetFromArray(
paddle
::
platform
::
CUDAPlace
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -240,7 +240,7 @@ void PyCUDAPinnedTensorSetFromArray(
const
paddle
::
platform
::
CUDAPinnedPlace
&
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -260,7 +260,7 @@ inline void PyCUDAPinnedTensorSetFromArray(
const
paddle
::
platform
::
CUDAPinnedPlace
&
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
python/paddle/fluid/__init__.py
浏览文件 @
1b564bc4
...
...
@@ -126,9 +126,9 @@ def __bootstrap__():
'check_nan_inf'
,
'benchmark'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'use_ngraph'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
"dist_threadpool_size"
,
'eager_delete_tensor_gb'
,
'
allocator_strategy
'
,
'
reader_queue_speed_test_mode'
,
'print_sub_graph_dir
'
,
'pe_profile_fname'
'eager_delete_tensor_gb'
,
'
fast_eager_deletion_mode
'
,
'
allocator_strategy'
,
'reader_queue_speed_test_mode
'
,
'p
rint_sub_graph_dir'
,
'p
e_profile_fname'
]
if
'Darwin'
not
in
sysstr
:
read_env_flags
.
append
(
'use_pinned_memory'
)
...
...
python/paddle/fluid/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
0 → 100644
浏览文件 @
1b564bc4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
'0.0'
os
.
environ
[
'CPU_NUM'
]
=
'2'
import
six
import
unittest
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
def
train
(
network
,
use_cuda
,
use_parallel_executor
,
batch_size
=
32
,
pass_num
=
2
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
print
(
'Skip use_cuda=True because Paddle is not compiled with cuda'
)
return
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
batch_size
=
batch_size
)
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
=
network
(
data
,
label
,
len
(
word_dict
))
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.2
)
optimizer
.
minimize
(
cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
reader
=
feeder
.
decorate_reader
(
train_reader
,
multi_devices
=
use_parallel_executor
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
if
use_parallel_executor
:
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
loss_name
=
cost
.
name
)
fetch_list
=
[
cost
.
name
]
else
:
train_exe
=
exe
fetch_list
=
[
cost
]
for
pass_id
in
six
.
moves
.
xrange
(
pass_num
):
batch_id
=
0
for
data
in
reader
():
train_exe
.
run
(
feed
=
data
,
fetch_list
=
fetch_list
if
batch_id
%
4
==
0
else
[])
batch_id
+=
1
if
batch_id
>
16
:
break
class
TestBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
net
=
None
def
test_network
(
self
):
if
self
.
net
is
None
:
return
for
use_cuda
in
[
True
,
False
]:
for
use_parallel_executor
in
[
False
,
True
]:
print
(
'network: {}, use_cuda: {}, use_parallel_executor: {}'
.
format
(
self
.
net
.
__name__
,
use_cuda
,
use_parallel_executor
))
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
with
fluid
.
scope_guard
(
core
.
Scope
()):
train
(
self
.
net
,
use_cuda
,
use_parallel_executor
)
python/paddle/fluid/tests/unittests/test_eager_deletion_gru_net.py
0 → 100644
浏览文件 @
1b564bc4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
test_eager_deletion_dynamic_rnn_base
import
TestBase
import
paddle.fluid
as
fluid
def
gru_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
400.0
):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
gru_max_tanh
=
fluid
.
layers
.
tanh
(
gru_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
class
GRUTest
(
TestBase
):
def
setUp
(
self
):
self
.
net
=
gru_net
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_eager_deletion_lstm_net.py
0 → 100644
浏览文件 @
1b564bc4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
test_eager_deletion_dynamic_rnn_base
import
TestBase
import
paddle.fluid
as
fluid
import
unittest
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max_tanh
=
fluid
.
layers
.
tanh
(
lstm_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
class
LSTMTest
(
TestBase
):
def
setUp
(
self
):
self
.
net
=
lstm_net
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_eager_deletion_mnist.py
0 → 100644
浏览文件 @
1b564bc4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
"0.0"
from
test_parallel_executor_mnist
import
TestMNIST
class
EagerDeletionTestMNIST
(
TestMNIST
):
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_eager_deletion_transformer.py
0 → 100644
浏览文件 @
1b564bc4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
"0.0"
from
test_parallel_executor_transformer
import
TestTransformer
class
EagerDeletionTestTransformer
(
TestTransformer
):
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录