提交 19a37ecd 编写于 作者: G guosheng

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into fix-ROIPoolOP-warn

......@@ -459,11 +459,11 @@ function(py_test TARGET_NAME)
if(WITH_TESTING)
set(options STATIC static SHARED shared)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(multiValueArgs SRCS DEPS ARGS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python
${PYTHON_EXECUTABLE} ${py_test_SRCS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
endfunction()
经典的线性回归任务
==================
PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍将向你展示如何利用PaddlePaddle来解决一个经典的线性回归问题。
任务简介
--------
我们展示如何用PaddlePaddle解决 `单变量的线性回归 <https://www.baidu.com/s?wd=单变量线性回归>`_ 问题。线性回归的输入是一批点 `(x, y)` ,其中 `y = wx + b + ε`, 而 ε 是一个符合高斯分布的随机变量。线性回归的输出是从这批点估计出来的参数 `w` 和 `b` 。
一个例子是房产估值。我们假设房产的价格(y)是其大小(x)的一个线性函数,那么我们可以通过收集市场上房子的大小和价格,用来估计线性函数的参数w 和 b。
准备数据
-----------
假设变量 `x` 和 `y` 的真实关系为: `y = 2x + 0.3 + ε`,这里展示如何使用观测数据来拟合这一线性关系。首先,Python代码将随机产生2000个观测点,作为线性回归的输入。下面脚本符合PaddlePaddle期待的读取数据的Python程序的模式。
.. code-block:: python
# dataprovider.py
from paddle.trainer.PyDataProvider2 import *
import random
# 定义输入数据的类型: 2个浮点数
@provider(input_types=[dense_vector(1), dense_vector(1)],use_seq=False)
def process(settings, input_file):
for i in xrange(2000):
x = random.random()
yield [x], [2*x+0.3]
训练模型
-----------
为了还原 `y = 2x + 0.3`,我们先从一条随机的直线 `y' = wx + b` 开始,然后利用观测数据调整 `w` 和 `b` 使得 `y'` 和 `y` 的差距不断减小,最终趋于接近。这个过程就是模型的训练过程,而 `w` 和 `b` 就是模型的参数,即我们的训练目标。
在PaddlePaddle里,该模型的网络配置如下。
.. code-block:: python
# trainer_config.py
from paddle.trainer_config_helpers import *
# 1. 定义数据来源,调用上面的process函数获得观测数据
data_file = 'empty.list'
with open(data_file, 'w') as f: f.writelines(' ')
define_py_data_sources2(train_list=data_file, test_list=None,
module='dataprovider', obj='process',args={})
# 2. 学习算法。控制如何改变模型参数 w 和 b
settings(batch_size=12, learning_rate=1e-3, learning_method=MomentumOptimizer())
# 3. 神经网络配置
x = data_layer(name='x', size=1)
y = data_layer(name='y', size=1)
# 线性计算网络层: ȳ = wx + b
ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
# 计算误差函数,即 ȳ 和真实 y 之间的距离
cost = square_error_cost(input= ȳ, label=y)
outputs(cost)
这段简短的配置展示了PaddlePaddle的基本用法:
- 第一部分定义了数据输入。一般情况下,PaddlePaddle先从一个文件列表里获得数据文件地址,然后交给用户自定义的函数(例如上面的 `process`函数)进行读入和预处理从而得到真实输入。本文中由于输入数据是随机生成的不需要读输入文件,所以放一个空列表(`empty.list`)即可。
- 第二部分主要是选择学习算法,它定义了模型参数改变的规则。PaddlePaddle提供了很多优秀的学习算法,这里使用一个基于momentum的随机梯度下降(SGD)算法,该算法每批量(batch)读取12个采样数据进行随机梯度计算来更新更新。
- 最后一部分是神经网络的配置。由于PaddlePaddle已经实现了丰富的网络层,所以很多时候你需要做的只是定义正确的网络层并把它们连接起来。这里使用了三种网络单元:
- **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。
- **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。
- **回归误差代价层**:回归误差代价层 `square_error_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令:
.. code-block:: bash
paddle train --config=trainer_config.py --save_dir=./output --num_passes=30
PaddlePaddle将在观测数据集上迭代训练30轮,并将每轮的模型结果存放在 `./output` 路径下。从输出日志可以看到,随着轮数增加误差代价函数的输出在不断的减小,这意味着模型在训练数据上不断的改进,直到逼近真实解:` y = 2x + 0.3 `
模型检验
-----------
训练完成后,我们希望能够检验模型的好坏。一种常用的做法是用学习的模型对另外一组测试数据进行预测,评价预测的效果。在这个例子中,由于已经知道了真实答案,我们可以直接观察模型的参数是否符合预期来进行检验。
PaddlePaddle将每个模型参数作为一个numpy数组单独存为一个文件,所以可以利用如下方法读取模型的参数。
.. code-block:: python
import numpy as np
import os
def load(file_name):
with open(file_name, 'rb') as f:
f.read(16) # skip header for float type.
return np.fromfile(f, dtype=np.float32)
print 'w=%.6f, b=%.6f' % (load('output/pass-00029/w'), load('output/pass-00029/b'))
# w=1.999743, b=0.300137
.. image:: ./parameters.png
:align: center
:scale: 80 %
从图中可以看到,虽然 `w` 和 `b` 都使用随机值初始化,但在起初的几轮训练中它们都在快速逼近真实值,并且后续仍在不断改进,使得最终得到的模型几乎与真实模型一致。
这样,我们用PaddlePaddle解决了单变量线性回归问题, 包括数据输入、模型训练和最后的结果验证。
Simple Linear Regression
========================
PaddlePaddle is a deep learning platform open-sourced by Baidu. With PaddlePaddle, you can easily train a classic neural network within a couple lines of configuration, or you can build sophisticated models that provide state-of-the-art performance on difficult learning tasks like sentiment analysis, machine translation, image caption and so on.
Problem Background
------------------
Now, to give you a hint of what using PaddlePaddle looks like, let's start with a fundamental learning problem - `simple linear regression <https://en.wikipedia.org/wiki/Simple_linear_regression>`_: you have observed a set of two-dimensional data points of ``X`` and ``Y``, where ``X`` is an explanatory variable and ``Y`` is corresponding dependent variable, and you want to recover the underlying correlation between ``X`` and ``Y``. Linear regression can be used in many practical scenarios. For example, ``X`` can be a variable about house size, and ``Y`` a variable about house price. You can build a model that captures relationship between them by observing real estate markets.
Prepare the Data
-----------------
Suppose the true relationship can be characterized as ``Y = 2X + 0.3``, let's see how to recover this pattern only from observed data. Here is a piece of python code that feeds synthetic data to PaddlePaddle. The code is pretty self-explanatory, the only extra thing you need to add for PaddlePaddle is a definition of input data types.
.. code-block:: python
# dataprovider.py
from paddle.trainer.PyDataProvider2 import *
import random
# define data types of input: 2 real numbers
@provider(input_types=[dense_vector(1), dense_vector(1)],use_seq=False)
def process(settings, input_file):
for i in xrange(2000):
x = random.random()
yield [x], [2*x+0.3]
Train a NeuralNetwork
----------------------
To recover this relationship between ``X`` and ``Y``, we use a neural network with one layer of linear activation units and a square error cost layer. Don't worry if you are not familiar with these terminologies, it's just saying that we are starting from a random line ``Y' = wX + b`` , then we gradually adapt ``w`` and ``b`` to minimize the difference between ``Y'`` and ``Y``. Here is what it looks like in PaddlePaddle:
.. code-block:: python
# trainer_config.py
from paddle.trainer_config_helpers import *
# 1. read data. Suppose you saved above python code as dataprovider.py
data_file = 'empty.list'
with open(data_file, 'w') as f: f.writelines(' ')
define_py_data_sources2(train_list=data_file, test_list=None,
module='dataprovider', obj='process',args={})
# 2. learning algorithm
settings(batch_size=12, learning_rate=1e-3, learning_method=MomentumOptimizer())
# 3. Network configuration
x = data_layer(name='x', size=1)
y = data_layer(name='y', size=1)
y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
cost = square_error_cost(input=y_predict, label=y)
outputs(cost)
Some of the most fundamental usages of PaddlePaddle are demonstrated:
- The first part shows how to feed data into PaddlePaddle. In general cases, PaddlePaddle reads raw data from a list of files, and then do some user-defined process to get real input. In this case, we only need to create a placeholder file since we are generating synthetic data on the fly.
- The second part describes learning algorithm. It defines in what ways adjustments are made to model parameters. PaddlePaddle provides a rich set of optimizers, but a simple momentum based optimizer will suffice here, and it processes 12 data points each time.
- Finally, the network configuration. It usually is as simple as "stacking" layers. Three kinds of layers are used in this configuration:
- **Data Layer**: a network always starts with one or more data layers. They provide input data to the rest of the network. In this problem, two data layers are used respectively for ``X`` and ``Y``.
- **FC Layer**: FC layer is short for Fully Connected Layer, which connects all the input units to current layer and does the actual computation specified as activation function. Computation layers like this are the fundamental building blocks of a deeper model.
- **Cost Layer**: in training phase, cost layers are usually the last layers of the network. They measure the performance of current model, and provide guidence to adjust parameters.
Now that everything is ready, you can train the network with a simple command line call:
.. code-block:: bash
paddle train --config=trainer_config.py --save_dir=./output --num_passes=30
This means that PaddlePaddle will train this network on the synthectic dataset for 30 passes, and save all the models under path ``./output``. You will see from the messages printed out during training phase that the model cost is decreasing as time goes by, which indicates we are getting a closer guess.
Evaluate the Model
-------------------
Usually, a different dataset that left out during training phase should be used to evalute the models. However, we are lucky enough to know the real answer: ``w=2, b=0.3``, thus a better option is to check out model parameters directly.
In PaddlePaddle, training is just to get a collection of model parameters, which are ``w`` and ``b`` in this case. Each parameter is saved in an individual file in the popular ``numpy`` array format. Here is the code that reads parameters from last pass.
.. code-block:: python
import numpy as np
import os
def load(file_name):
with open(file_name, 'rb') as f:
f.read(16) # skip header for float type.
return np.fromfile(f, dtype=np.float32)
print 'w=%.6f, b=%.6f' % (load('output/pass-00029/w'), load('output/pass-00029/b'))
# w=1.999743, b=0.300137
.. image:: parameters.png
:align: center
Although starts from a random guess, you can see that value of ``w`` changes quickly towards 2 and ``b`` changes quickly towards 0.3. In the end, the predicted line is almost identical with real answer.
There, you have recovered the underlying pattern between ``X`` and ``Y`` only from observed data.
从源码编译PaddlePaddle
======================
.. _build_step:
编译方法
----------------
PaddlePaddle主要使用 `CMake <https://cmake.org>`_ 以及GCC, G++作为编译工具。
我们推荐您使用PaddlePaddle编译环境镜像完成编译,这样可以免去单独安装编译依赖的步骤,可选的不同编译环境
可以在 `这里 <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ 找到。
编译PaddlePaddle,需要执行:
.. code-block:: bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# 如果使用Docker编译环境,执行下面的命令编译CPU-Only的二进制
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/scripts/docker/build.sh
# 如果不使用Docker编译环境,执行下面的命令
mkdir build
cd build
cmake -DWITH_GPU=OFF -DWITH_TESTING=OFF ..
make
编译完成后会在build/python/dist目录下生成输出的whl包,可以选在在当前机器安装也可以拷贝到目标机器安装:
.. code-block:: bash
pip install python/dist/*.whl
.. _build_step:
编译依赖
----------------
PaddlePaddle编译需要使用到下面的依赖(包含但不限于),其他的依赖软件,会自动在编译时下载。
.. csv-table:: PaddlePaddle编译依赖
:header: "依赖", "版本", "说明"
:widths: 10, 15, 30
"CMake", ">=3.5", ""
"GCC", "4.8.2", "推荐使用CentOS的devtools2"
"Python", "2.7.x", "依赖libpython2.7.so"
"pip", ">=9.0", ""
"numpy", "", ""
"SWIG", ">=2.0", ""
"Go", ">=1.8", "可选"
.. _build_options:
编译选项
----------------
PaddlePaddle的编译选项,包括生成CPU/GPU二进制文件、链接何种BLAS库等。
用户可在调用cmake的时候设置它们,详细的cmake使用方法可以参考
`官方文档 <https://cmake.org/cmake-tutorial>`_ 。
在cmake的命令行中,通过使用 ``-D`` 命令设置该类编译选项,例如:
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: 编译选项说明
:header: "选项", "说明", "默认值"
:widths: 1, 7, 2
"WITH_GPU", "是否支持GPU", "ON"
"WITH_C_API", "是否仅编译CAPI", "OFF"
"WITH_DOUBLE", "是否使用双精度浮点数", "OFF"
"WITH_DSO", "是否运行时动态加载CUDA动态库,而非静态加载CUDA动态库。", "ON"
"WITH_AVX", "是否编译含有AVX指令集的PaddlePaddle二进制文件", "ON"
"WITH_PYTHON", "是否内嵌PYTHON解释器", "ON"
"WITH_STYLE_CHECK", "是否编译时进行代码风格检查", "ON"
"WITH_TESTING", "是否开启单元测试", "ON"
"WITH_DOC", "是否编译中英文文档", "OFF"
"WITH_SWIG_PY", "是否编译PYTHON的SWIG接口,该接口可用于预测和定制化训练", "Auto"
"WITH_GOLANG", "是否编译go语言的可容错parameter server", "ON"
"WITH_MKL", "是否使用MKL数学库,如果为否则是用OpenBLAS", "ON"
BLAS
+++++
PaddlePaddle支持 `MKL <https://software.intel.com/en-us/intel-mkl>`_ 和
`OpenBlAS <http://www.openblas.net/>`_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集,
还会下载MKL-DNN数学库,详细参考 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_ 。
如果关闭MKL,则会使用OpenBLAS作为BLAS库。
CUDA/cuDNN
+++++++++++
PaddlePaddle在编译时/运行时会自动找到系统中安装的CUDA和cuDNN库进行编译和执行。
使用参数 :code:`-DCUDA_ARCH_NAME=Auto` 可以指定开启自动检测SM架构,加速编译。
PaddlePaddle可以使用cuDNN v5.1之后的任何一个版本来编译运行,但尽量请保持编译和运行使用的cuDNN是同一个版本。
我们推荐使用最新版本的cuDNN。
编译选项的设置
++++++++++++++
PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。cmake编译时,首先在系统路径( :code:`/usr/lib:/usr/local/lib` )中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如
.. code-block:: bash
cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5
**注意:这几个编译选项的设置,只在第一次cmake的时候有效。如果之后想要重新设置,推荐清理整个编译目录(** :code:`rm -rf` )**后,再指定。**
Installing from Sources
==========================
* [1. Download and Setup](#download)
* [2. Requirements](#requirements)
* [3. Build on Ubuntu](#ubuntu)
* [4. Build on Centos](#centos)
## <span id="download">Download and Setup</span>
You can download PaddlePaddle from the [github source](https://github.com/PaddlePaddle/Paddle).
```bash
git clone https://github.com/PaddlePaddle/Paddle paddle
cd paddle
```
## <span id="requirements">Requirements</span>
To compile the source code, your computer must be equipped with the following dependencies.
- **Compiler**: GCC >= 4.8 or Clang >= 3.3 (AppleClang >= 5.1) and gfortran compiler
- **CMake**: CMake >= 3.0 (at least CMake 3.4 on Mac OS X)
- **BLAS**: MKL, OpenBlas or ATLAS
- **Python**: only support Python 2.7
- **Go**
**Note:** For CUDA 7.0 and CUDA 7.5, GCC 5.0 and up are not supported!
For CUDA 8.0, GCC versions later than 5.3 are not supported!
### Options
PaddlePaddle supports some build options.
<html>
<table>
<thead>
<tr>
<th scope="col" class="left">Optional</th>
<th scope="col" class="left">Description</th>
</tr>
</thead>
<tbody>
<tr><td class="left">WITH_GPU</td><td class="left">Compile PaddlePaddle with NVIDIA GPU</td></tr>
<tr><td class="left">WITH_AVX</td><td class="left">Compile PaddlePaddle with AVX intrinsics</td></tr>
<tr><td class="left">WITH_DSO</td><td class="left">Compile PaddlePaddle with dynamic linked CUDA</td></tr>
<tr><td class="left">WITH_TESTING</td><td class="left">Compile PaddlePaddle with unit testing</td></tr>
<tr><td class="left">WITH_SWIG_PY</td><td class="left">Compile PaddlePaddle with inference api</td></tr>
<tr><td class="left">WITH_STYLE_CHECK</td><td class="left">Compile PaddlePaddle with style check</td></tr>
<tr><td class="left">WITH_PYTHON</td><td class="left">Compile PaddlePaddle with python interpreter</td></tr>
<tr><td class="left">WITH_DOUBLE</td><td class="left">Compile PaddlePaddle with double precision</td></tr>
<tr><td class="left">WITH_RDMA</td><td class="left">Compile PaddlePaddle with RDMA support</td></tr>
<tr><td class="left">WITH_TIMER</td><td class="left">Compile PaddlePaddle with stats timer</td></tr>
<tr><td class="left">WITH_PROFILER</td><td class="left">Compile PaddlePaddle with GPU profiler</td></tr>
<tr><td class="left">WITH_DOC</td><td class="left">Compile PaddlePaddle with documentation</td></tr>
<tr><td class="left">WITH_COVERAGE</td><td class="left">Compile PaddlePaddle with code coverage</td></tr>
<tr><td class="left">COVERALLS_UPLOAD</td><td class="left">Package code coverage data to coveralls</td></tr>
<tr><td class="left">ON_TRAVIS</td><td class="left">Exclude special unit test on Travis CI</td></tr>
</tbody>
</table>
</html>
**Note:**
- The GPU version works best with Cuda Toolkit 8.0 and cuDNN v5.
- Other versions like Cuda Toolkit 7.0, 7.5 and cuDNN v3, v4 are also supported.
- **To utilize cuDNN v5, Cuda Toolkit 7.5 is prerequisite and vice versa.**
As a simple example, consider the following:
1. **BLAS Dependencies(optional)**
CMake will search BLAS libraries from the system. If not found, OpenBLAS will be downloaded, built and installed automatically.
To utilize preinstalled BLAS, you can simply specify MKL, OpenBLAS or ATLAS via `MKL_ROOT`, `OPENBLAS_ROOT` or `ATLAS_ROOT`.
```bash
# specify MKL
cmake .. -DMKL_ROOT=<mkl_path>
# or specify OpenBLAS
cmake .. -DOPENBLAS_ROOT=<openblas_path>
```
2. **Doc Dependencies(optional)**
To generate PaddlePaddle's documentation, install dependencies and set `-DWITH_DOC=ON` as follows:
```bash
pip install 'sphinx>=1.4.0'
pip install sphinx_rtd_theme recommonmark
# install doxygen on Ubuntu
sudo apt-get install doxygen
# install doxygen on Mac OS X
brew install doxygen
# active docs in cmake
cmake .. -DWITH_DOC=ON`
```
## <span id="ubuntu">Build on Ubuntu 14.04</span>
### Install Dependencies
- **Paddle Dependencies**
```bash
# necessary
sudo apt-get update
sudo apt-get install -y git curl gcc g++ gfortran make build-essential automake
sudo apt-get install -y python python-pip python-numpy libpython-dev bison
sudo pip install 'protobuf==3.1.0.post1'
# Install Go
# You can follow https://golang.org/doc/install for a detailed explanation.
wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \
tar -C $HOME -xzf go.tgz && \
mkdir $HOME/gopath && \
rm go.tgz
# Setup environment variables
export GOROOT=$HOME/go
export GOPATH=$HOME/gopath
export PATH=$PATH:$GOROOT/bin
# install cmake 3.4
curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j4 && sudo make install && \
cd .. && rm -rf cmake-3.4.1
```
- **GPU Dependencies (optional)**
To build GPU version, you will need the following installed:
1. a CUDA-capable GPU
2. A supported version of Linux with a GCC compiler and toolchain
3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)
4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn)
The CUDA development environment relies on tight integration with the host development environment,
including the host compiler and C runtime libraries, and is therefore only supported on
distribution versions that have been qualified for this CUDA Toolkit release.
After downloading cuDNN library, issue the following commands:
```bash
sudo tar -xzf cudnn-7.5-linux-x64-v5.1.tgz -C /usr/local
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
```
Then you need to set LD\_LIBRARY\_PATH, PATH environment variables in ~/.bashrc.
```bash
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda/bin:$PATH
```
### Build and Install
As usual, the best option is to create build folder under paddle project directory.
```bash
mkdir build && cd build
```
Finally, you can build and install PaddlePaddle:
```bash
# you can add build option here, such as:
cmake .. -DCMAKE_INSTALL_PREFIX=<path to install>
# please use sudo make install, if you want to install PaddlePaddle into the system
make -j `nproc` && make install
# set PaddlePaddle installation path in ~/.bashrc
export PATH=<path to install>/bin:$PATH
# install PaddlePaddle Python modules.
sudo pip install <path to install>/opt/paddle/share/wheels/*.whl
```
## <span id="centos">Build on Centos 7</span>
### Install Dependencies
- **CPU Dependencies**
```bash
# necessary
sudo yum update
sudo yum install -y epel-release
sudo yum install -y make cmake3 python-devel python-pip gcc-gfortran swig git
sudo pip install wheel numpy
sudo pip install 'protobuf>=3.0.0'
```
- **GPU Dependencies (optional)**
To build GPU version, you will need the following installed:
1. a CUDA-capable GPU
2. A supported version of Linux with a GCC compiler and toolchain
3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)
4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn)
The CUDA development environment relies on tight integration with the host development environment,
including the host compiler and C runtime libraries, and is therefore only supported on
distribution versions that have been qualified for this CUDA Toolkit release.
After downloading cuDNN library, issue the following commands:
```bash
sudo tar -xzf cudnn-7.5-linux-x64-v5.1.tgz -C /usr/local
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
```
Then you need to set LD\_LIBRARY\_PATH, PATH environment variables in ~/.bashrc.
```bash
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda/bin:$PATH
```
### Build and Install
As usual, the best option is to create build folder under paddle project directory.
```bash
mkdir build && cd build
```
Finally, you can build and install PaddlePaddle:
```bash
# you can add build option here, such as:
cmake3 .. -DCMAKE_INSTALL_PREFIX=<path to install>
# please use sudo make install, if you want to install PaddlePaddle into the system
make -j `nproc` && make install
# set PaddlePaddle installation path in ~/.bashrc
export PATH=<path to install>/bin:$PATH
# install PaddlePaddle Python modules.
sudo pip install <path to install>/opt/paddle/share/wheels/*.whl
```
Build PaddlePaddle from Sources
==========================
.. _build_step:
How To Build
----------------
PaddlePaddle mainly uses `CMake <https://cmake.org>`_ and GCC, G++ as compile
tools. We recommend you to use our pre-built Docker image to run the build
to avoid installing dependencies by yourself. We have several build environment
Docker images `here <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_.
Then run:
.. code-block:: bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# run the following command to build CPU-Only binaries if you are using docker
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/scripts/docker/build.sh
# else run these commands
mkdir build
cd build
cmake -DWITH_GPU=OFF -DWITH_TESTING=OFF ..
make
When the compile finishes, you can get the output whl package under
build/python/dist, then you can choose to install the whl on local
machine or copy it to the target machine.
.. code-block:: bash
pip install python/dist/*.whl
.. _build_step:
Compile Dependencies
----------------
PaddlePaddle need the following dependencies when compiling, other dependencies
will be downloaded automatically.
.. csv-table:: PaddlePaddle Compile Dependencies
:header: "Dependency", "Version", "Description"
:widths: 10, 15, 30
"CMake", ">=3.5", ""
"GCC", "4.8.2", "Recommend devtools2 for CentOS"
"Python", "2.7.x", "Need libpython2.7.so"
"pip", ">=9.0", ""
"numpy", "", ""
"SWIG", ">=2.0", ""
"Go", ">=1.8", "Optional"
.. _build_options:
Build Options
----------------
Build options include whether build binaries for CPU or GPU, which BLAS
library to use etc. You may pass these settings when running cmake.
For detailed cmake tutorial please refer to `here <https://cmake.org/cmake-tutorial>`_ 。
.. _build_options_bool:
Bool Type Options
----------------
You can add :code:`-D` argument to pass such options, like:
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: Bool Type Options
:header: "Option", "Description", "Default"
:widths: 1, 7, 2
"WITH_GPU", "Build with GPU support", "ON"
"WITH_C_API", "Build only CAPI", "OFF"
"WITH_DOUBLE", "Build with double precision", "OFF"
"WITH_DSO", "Dynamically load CUDA libraries", "ON"
"WITH_AVX", "Build with AVX support", "ON"
"WITH_PYTHON", "Build with integrated Python interpreter", "ON"
"WITH_STYLE_CHECK", "Check code style when building", "ON"
"WITH_TESTING", "Build unit tests", "ON"
"WITH_DOC", "Build documentaions", "OFF"
"WITH_SWIG_PY", "Build Python SWIG interface for V2 API", "Auto"
"WITH_GOLANG", "Build fault-tolerant parameter server written in go", "ON"
"WITH_MKL", "Use MKL as BLAS library, else use OpenBLAS", "ON"
BLAS
+++++
PaddlePaddle supports `MKL <https://software.intel.com/en-us/intel-mkl>`_ and
`OpenBlAS <http://www.openblas.net/>`_ as BLAS library。By default it uses MKL.
If you are using MKL and your machine supports AVX2, MKL-DNN will also be downloaded
and used, for more `details <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_ .
If you choose not to use MKL, then OpenBlAS will be used.
CUDA/cuDNN
+++++++++++
PaddlePaddle will automatically find CUDA and cuDNN when compiling and running.
parameter :code:`-DCUDA_ARCH_NAME=Auto` can be used to detect SM architecture
automatically in order to speed up the build.
PaddlePaddle can build with any version later than cuDNN v5.1, and we intend to
keep on with latest cuDNN versions. Be sure to run with the same version of cuDNN
you built.
Pass Compile Options
++++++++++++++
You can pass compile options to use intended BLAS/CUDA/Cudnn libraries.
When running cmake command, it will search system paths like
:code:`/usr/lib:/usr/local/lib` and then search paths that you
passed to cmake, i.e.
.. code-block:: bash
cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5
**NOTE: These options only take effect when running cmake for the first time, you need to clean the cmake cache or clean the build directory (** :code:`rm -rf` **) if you want to change it.**
PaddlePaddle的编译选项
======================
PaddlePaddle的编译选项,包括生成CPU/GPU二进制文件、链接何种BLAS库等。用户可在调用cmake的时候设置它们,详细的cmake使用方法可以参考 `官方文档 <https://cmake.org/cmake-tutorial>`_ 。
Bool型的编译选项
----------------
用户可在cmake的命令行中,通过使用 ``-D`` 命令设置该类编译选项,例如
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: Bool型的编译选项
:widths: 1, 7, 2
:file: compile_options.csv
BLAS/CUDA/Cudnn的编译选项
--------------------------
BLAS
+++++
PaddlePaddle支持以下任意一种BLAS库:`MKL <https://software.intel.com/en-us/intel-mkl>`_ ,`ATLAS <http://math-atlas.sourceforge.net/>`_ ,`OpenBlAS <http://www.openblas.net/>`_ 和 `REFERENCE BLAS <http://www.netlib.org/blas/>`_ 。
.. csv-table:: BLAS路径相关的编译选项
:widths: 1, 2, 7
:file: cblas_settings.csv
CUDA/Cudnn
+++++++++++
PaddlePaddle可以使用cudnn v2之后的任何一个版本来编译运行,但尽量请保持编译和运行使用的cudnn是同一个版本。 我们推荐使用最新版本的cudnn v5.1。
编译选项的设置
++++++++++++++
PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/Cudnn库。cmake编译时,首先在系统路径(/usr/lib\:/usr/local/lib)中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如
.. code-block:: bash
cmake .. -DMKL_ROOT=/opt/mkl/ -DCUDNN_ROOT=/opt/cudnnv5
注意:这几个编译选项的设置,只在第一次cmake的时候有效。如果之后想要重新设置,推荐清理整个编译目录(``rm -rf``)后,再指定。
编译选项,描述,注意
MKL_ROOT,MKL的路径,${MKL_ROOT}/include下需要包含mkl.h,${MKL_ROOT}/lib目录下需要包含mkl_core,mkl_sequential和mkl_intel_lp64三个库。
ATLAS_ROOT,ATLAS的路径,${ATLAS_ROOT}/include下需要包含cblas.h,${ATLAS_ROOT}/lib下需要包含cblas和atlas两个库。
OPENBLAS_ROOT,OpenBLAS的路径,${OPENBLAS_ROOT}/include下需要包含cblas.h,${OPENBLAS_ROOT}/lib下需要包含openblas库。
REFERENCE_CBLAS_ROOT,REFERENCE BLAS的路径,${REFERENCE_CBLAS_ROOT}/include下需要包含cblas.h,${REFERENCE_CBLAS_ROOT}/lib下需要包含cblas库。
\ No newline at end of file
选项,说明,默认值
WITH_GPU,是否支持GPU。,取决于是否寻找到CUDA工具链
WITH_DOUBLE,是否使用双精度浮点数。,否
WITH_DSO,是否运行时动态加载CUDA动态库,而非静态加载CUDA动态库。,是
WITH_AVX,是否编译含有AVX指令集的PaddlePaddle二进制文件,是
WITH_PYTHON,是否内嵌PYTHON解释器。方便今后的嵌入式移植工作。,是
WITH_STYLE_CHECK,是否编译时进行代码风格检查,是
WITH_RDMA,是否开启RDMA,否
WITH_TIMER,是否开启计时功能。如果开启会导致运行略慢,打印的日志变多,但是方便调试和测Benchmark,否
WITH_TESTING,是否开启单元测试,取决于是否寻找到GTEST
WITH_DOC,是否编译中英文文档,否
WITH_SWIG_PY,是否编译PYTHON的SWIG接口,该接口可用于预测和定制化训练,取决于是否寻找到SWIG
\ No newline at end of file
PaddlePaddle的Docker容器使用方式
使用Docker安装运行PaddlePaddle
================================
PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 `Dockers设置 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 才能充分利用Mac OS X和Windows上的硬件资源。
使用Docker安装和运行PaddlePaddle可以无需考虑依赖环境即可运行。并且也可以在Windows的docker中运行。
您可以在 `Docker官网 <https://docs.docker.com/get-started/>`_ 获得基本的Docker安装和使用方法。
Docker使用入门
------------------------------
几个基础的概念帮助理解和使用Docker:
如果您在使用Windows,可以参考
`这篇 <https://docs.docker.com/toolbox/toolbox_install_windows/>`_
教程,完成在Windows上安装和使用Docker。
- *镜像*:一个Docker镜像是一个打包好的软件。它包含了这个软件本身和它所依赖的运行环境。PaddlePaddle的Docker镜像就包含了PaddlePaddle的Python库以及其依赖的多个Python库。这样我们可以直接在Docker中运行需要的程序而不需要安装后在执行。可以执行
在了解Docker的基本使用方法之后,即可开始下面的步骤
.. code-block:: bash
.. _docker_pull:
docker images
获取PaddlePaddle的Docker镜像
------------------------------
来列出当前系统中的所有镜像,同样可以执行:
执行下面的命令获取最新的PaddlePaddle Docker镜像
.. code-block:: bash
docker pull paddlepaddle/paddle:0.10.0
来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用docker.paddlepaddle.org/paddle下载。
docker pull paddlepaddle/paddle
- *容器*: 如果说一个Docker镜像就是一个程序,那容器就是这个程序运行时产生的“进程”。
实际上,一个容器就是一个操作系统的进程,但是是运行在独立的进程空间,文件系统以及网络之上。
可以执行:
对于国内用户,我们提供了加速访问的镜像源:
.. code-block:: bash
docker run paddlepaddle/paddle:0.10.0
docker pull docker.paddlepaddle.org/paddle
来使用一个镜像启动一个容器。
- 默认情况下,Docker容器会运行在独立的文件系统空间之上,我们无法在Docker容器中
访问到主机上的文件。可以通过*挂载Volume*的方式,将主机上的文件或目录挂载到
Docker容器中。下面的命令把当前目录挂载到了容器中的 /data 目录下,容器使用
debian镜像,并且启动后执行 :code:`ls /data`。
下载GPU版本的Docker镜像:
.. code-block:: bash
docker run --rm -v $(pwd):/data debian ls /data
PaddlePaddle发布的Docker镜像使用说明
------------------------------
我们把PaddlePaddle的编译环境打包成一个镜像,称为开发镜像,里面涵盖了
PaddlePaddle需要的所有编译工具。把编译出来的PaddlePaddle也打包成一个镜
像,称为生产镜像,里面涵盖了PaddlePaddle运行所需的所有环境。每次
PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以及开发镜像。运
行镜像包括纯CPU版本和GPU版本以及其对应的非AVX版本。我们会在
`dockerhub.com <https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_
和国内镜像`docker.paddlepaddle.org` 提供最新
的Docker镜像,可以在"tags"标签下找到最新的Paddle镜像版本。
**注意:为了方便在国内的开发者下载Docker镜像,我们提供了国内的镜像服务器供大家使用。如果您在国内,请把文档里命令中的paddlepaddle/paddle替换成docker.paddlepaddle.org/paddle。**
1. 开发镜像::code:`paddlepaddle/paddle:0.10.0-dev`
这个镜像包含了Paddle相关的开发工具以及编译和运行环境。用户可以使用开发镜像代替配置本地环境,完成开发,编译,发布,
文档编写等工作。由于不同的Paddle的版本可能需要不同的依赖和工具,所以如果需要自行配置开发环境需要考虑版本的因素。
开发镜像包含了以下工具:
- gcc/clang
- nvcc
- Python
- sphinx
- woboq
- sshd
很多开发者会使用远程的安装有GPU的服务器工作,用户可以使用ssh登录到这台服务器上并执行 :code:`docker exec`进入开发镜像并开始工作,
也可以在开发镜像中启动一个SSHD服务,方便开发者直接登录到镜像中进行开发:
以交互容器方式运行开发镜像:
.. code-block:: bash
docker run -it --rm -v $(pwd):/paddle paddlepaddle/paddle:0.10.0-dev /bin/bash
或者,可以以后台进程方式运行容器:
.. code-block:: bash
docker run -d -p 2202:22 -p 8888:8888 -v $(pwd):/paddle paddlepaddle/paddle:0.10.0-dev /usr/sbin/sshd -D
然后用密码 :code:`root` SSH进入容器:
.. code-block:: bash
ssh -p 2202 root@localhost
SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。
2. 生产镜像:根据CPU、GPU和非AVX区分了如下4个镜像:
- GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu`
- GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx`
- CPU/AVX::code:`paddlepaddle/paddle:<version>`
- CPU/no-AVX::code:`paddlepaddle/paddle:<version>-noavx`
纯CPU镜像以及GPU镜像都会用到AVX指令集,但是2008年之前生产的旧电脑不支持AVX。以下指令能检查Linux电脑是否支持AVX:
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
如果输出是No,就需要选择使用no-AVX的镜像
**注:在0.10.0之后的版本,PaddlePaddle都可以自动判断硬件是否支持AVX,所以无需判断AVX即可使用**
docker pull paddlepaddle/paddle:latest-gpu
docker pull docker.paddlepaddle.org/paddle:latest-gpu
以上方法在GPU镜像里也能用,只是请不要忘记提前在物理机上安装GPU最新驱动。
为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)来运行镜像。
选择下载使用不同的BLAS库的Docker镜像:
.. code-block:: bash
nvidia-docker run -it --rm paddledev/paddle:0.10.0-gpu /bin/bash
.. code-block:: bash
注意: 如果使用nvidia-docker存在问题,你也许可以尝试更老的方法,具体如下,但是我们并不推荐这种方法。:
# 默认是使用MKL的镜像
docker pull paddlepaddle/paddle
# 使用OpenBLAS的镜像
docker pull paddlepaddle/paddle:latest-openblas
.. code-block:: bash
下载指定版本的Docker镜像,可以从 `DockerHub网站 <https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_ 获取可选的tag,并执行下面的命令:
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0-gpu
.. code-block:: bash
3. 运行以及发布您的AI程序
docker pull paddlepaddle/paddle:[tag]
# 比如:
docker pull docker.paddlepaddle.org/paddle:0.10.0-gpu
假设您已经完成了一个AI训练的python程序 :code:`a.py`,这个程序是您在开发机上使用开发镜像完成开发。此时您可以运行这个命令在开发机上进行测试运行:
.. _docker_run:
.. code-block:: bash
在Docker中执行PaddlePaddle训练程序
------------------------------
docker run -it -v $PWD:/work paddle /work/a.py
假设您已经在当前目录(比如在/home/work)编写了一个PaddlePaddle的程序 :code:`train.py` (可以参考
`PaddlePaddleBook <http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.cn.html>`_
编写),就可以使用下面的命令开始执行训练:
如果要使用GPU,请运行:
.. code-block:: bash
.. code-block:: bash
cd /home/work
docker run -it -v $PWD:/work paddlepaddle/paddle /work/train.py
上述命令中, :code:`-it` 参数说明容器已交互式运行; :code:`-v $PWD:/work`
指定将当前路径(Linux中$PWD变量会展开为当前路径的绝对路径)挂载到容器内部的 :code:`/work`
目录; :code:`paddlepaddle/paddle` 指定需要使用的容器; 最后 :code:`/work/train.py`
为容器内执行的命令,即运行训练程序。
nvidia-docker run -it -v $PWD:/work paddle /work/a.py
当然,您也可以进入到Docker容器中,以交互式的方式执行或调试您的代码:
.. code-block:: bash
docker run -it -v $PWD:/work paddlepaddle/paddle /bin/bash
cd /work
python train.py
这里`a.py`包含的所有依赖假设都可以在Paddle的运行容器中。如果需要包含更多的依赖、或者需要发布您的应用的镜像,可以编写`Dockerfile`使用`FROM paddledev/paddle:0.10.0`
创建和发布自己的AI程序镜像。
**注:PaddlePaddle Docker镜像为了减小体积,默认没有安装vim,您可以在容器中执行** :code:`apt-get install -y vim` **安装后,在容器中编辑代码。**
运行PaddlePaddle Book
---------------------
.. _docker_run_book:
Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。
使用Docker启动PaddlePaddle Book教程
------------------------------
使用Docker可以快速在本地启动一个包含了PaddlePaddle官方Book教程的Jupyter Notebook,可以通过网页浏览。
PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。
如果您想要更深入了解deep learning,PaddlePaddle Book一定是您最好的选择。
大家可以通过它阅读教程,或者制作和分享带有代码、公式、图表、文字的交互式文档。
我们提供可以直接运行PaddlePaddle Book的Docker镜像,直接运行:
.. code-block:: bash
.. code-block:: bash
docker run -p 8888:8888 paddlepaddle/book
docker run -p 8888:8888 paddlepaddle/book
然后在浏览器中输入以下网址:
.. code-block:: text
.. code-block:: text
http://localhost:8888/
http://localhost:8888/
就这么简单,享受您的旅程!
通过Docker容器开发PaddlePaddle
------------------------------
开发人员可以在Docker开发镜像中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。
.. _docker_run_gpu:
1. 制作PaddlePaddle开发镜像
PaddlePaddle每次发布新版本都会发布对应的开发镜像供开发者直接使用。这里介绍如生成造这个开发镜像。
生成Docker镜像的方式有两个,一个是直接把一个容器转换成镜像,另一个是创建Dockerfile并运行docker build指令按照Dockerfile生成镜像。第一个方法的好处是简单快捷,适合自己实验,可以快速迭代。第二个方法的好处是Dockerfile可以把整个生成流程描述很清楚,其他人很容易看懂镜像生成过程,持续集成系统也可以简单地复现这个过程。我们采用第二个方法。Dockerfile位于PaddlePaddle repo的根目录。生成生产镜像只需要运行:
.. code-block:: bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
docker build -t paddle:dev .
docker build这个命令的-t指定了生成的镜像的名字,这里我们用paddle:dev。到此,PaddlePaddle开发镜像就被构建完毕了。
使用Docker执行GPU训练
------------------------------
2. 制作PaddlePaddle生产镜像
为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用
`nvidia-docker <https://github.com/NVIDIA/nvidia-docker>`_ 来运行镜像。
请不要忘记提前在物理机上安装GPU最新驱动。
生产镜像的生成分为两步,第一步是运行:
.. code-block:: bash
.. code-block:: bash
docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=OFF" -e "WITH_TEST=ON" paddle:dev
nvidia-docker run -it -v $PWD:/work paddledev/paddle:latest-gpu /bin/bash
以上命令会编译PaddlePaddle,生成运行程序,以及生成创建生产镜像的Dockerfile。所有生成的的文件都在build目录下。“WITH_GPU”控制生成的生产镜像是否支持GPU,“WITH_AVX”控制生成的生产镜像是否支持AVX,”WITH_TEST“控制是否生成单元测试。
**注: 如果没有安装nvidia-docker,可以尝试以下的方法,将CUDA库和Linux设备挂载到Docker容器内:**
第二步是运行:
.. code-block:: bash
.. code-block:: bash
docker build -t paddle:prod -f build/Dockerfile ./build
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:latest-gpu
以上命令会按照生成的Dockerfile把生成的程序拷贝到生产镜像中并做相应的配置,最终生成名为paddle:prod的生产镜像。
**关于AVX:**
3. 运行单元测试
AVX是一种CPU指令集,可以加速PaddlePaddle的计算。最新的PaddlePaddle Docker镜像默认
是开启AVX编译的,所以,如果您的电脑不支持AVX,需要单独
`编译 <./build_from_source_cn.rst>`_ PaddlePaddle为no-avx版本。
运行以下指令
以下指令能检查Linux电脑是否支持AVX
.. code-block:: bash
docker run -it -v $(pwd):/paddle paddle:dev bash -c "cd /paddle/build && ctest"
文档
----
Paddle的Docker开发镜像带有一个通过 `woboq code browser
<https://github.com/woboq/woboq_codebrowser>`_ 生成的HTML版本的C++源代码,便于用户浏览C++源码。
只要在Docker里启动PaddlePaddle的时候给它一个名字,就可以再运行另一个Nginx Docker镜像来服务HTML代码:
.. code-block:: bash
docker run -d --name paddle-cpu-doc paddle:0.10.0-dev
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
接着我们就能够打开浏览器在 http://localhost:8088/paddle/ 浏览代码。
如果输出是No,就需要选择使用no-AVX的镜像
PaddlePaddle in Docker Containers
=================================
Docker container is currently the only officially-supported way to
running PaddlePaddle. This is reasonable as Docker now runs on all
major operating systems including Linux, Mac OS X, and Windows.
Please be aware that you will need to change `Dockers settings
<https://github.com/PaddlePaddle/Paddle/issues/627>`_ to make full use
of your hardware resource on Mac OS X and Windows.
Run PaddlePaddle in Docker container so that you don't need to care about
runtime dependencies, also you can run under Windows system. You can get
tutorials at `here <https://docs.docker.com/get-started/>`_ .
Working With Docker
-------------------
If you are using Windows, please refer to
`this <https://docs.docker.com/toolbox/toolbox_install_windows/>`_
tutorial to start running docker under windows.
Docker is simple as long as we understand a few basic concepts:
After you've read above tutorials you may proceed the following steps.
- *image*: A Docker image is a pack of software. It could contain one or more programs and all their dependencies. For example, the PaddlePaddle's Docker image includes pre-built PaddlePaddle and Python and many Python packages. We can run a Docker image directly, other than installing all these software. We can type
.. _docker_pull:
.. code-block:: bash
docker images
Pull PaddlePaddle Docker Image
------------------------------
to list all images in the system. We can also run
Run the following command to download the latest Docker images:
.. code-block:: bash
docker pull paddlepaddle/paddle:0.10.0
to download a Docker image, paddlepaddle/paddle in this example,
from Dockerhub.com.
docker pull paddlepaddle/paddle
- *container*: considering a Docker image a program, a container is a
"process" that runs the image. Indeed, a container is exactly an
operating system process, but with a virtualized filesystem, network
port space, and other virtualized environment. We can type
For users in China, we provide a faster mirror:
.. code-block:: bash
docker run paddlepaddle/paddle:0.10.0
docker pull docker.paddlepaddle.org/paddle
to start a container to run a Docker image, paddlepaddle/paddle in this example.
- By default docker container have an isolated file system namespace,
we can not see the files in the host file system. By using *volume*,
mounted files in host will be visible inside docker container.
Following command will mount current dirctory into /data inside
docker container, run docker container from debian image with
command :code:`ls /data`.
Download GPU version images:
.. code-block:: bash
docker run --rm -v $(pwd):/data debian ls /data
Usage of CPU-only and GPU Images
----------------------------------
We package PaddlePaddle's compile environment into a Docker image,
called the develop image, it contains all compiling tools that
PaddlePaddle needs. We package compiled PaddlePaddle program into a
Docker image as well, called the production image, it contains all
runtime environment that running PaddlePaddle needs. For each version
of PaddlePaddle, we release both of them. Production image includes
CPU-only version and a CUDA GPU version and their no-AVX versions.
We put the docker images on `dockerhub.com
<https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_. You can find the
latest versions under "tags" tab at dockerhub.com.
** NOTE: If you are in China, you can use our Docker image registry mirror to speed up the download process. To use it, please replace all paddlepaddle/paddle in the commands to docker.paddlepaddle.org/paddle.**
1. development image :code:`paddlepaddle/paddle:<version>-dev`
This image has packed related develop tools and runtime
environment. Users and developers can use this image instead of
their own local computer to accomplish development, build,
releasing, document writing etc. While different version of paddle
may depends on different version of libraries and tools, if you
want to setup a local environment, you must pay attention to the
versions. The development image contains:
- gcc/clang
- nvcc
- Python
- sphinx
- woboq
- sshd
Many developers use servers with GPUs, they can use ssh to login to
the server and run :code:`docker exec` to enter the docker
container and start their work. Also they can start a development
docker image with SSHD service, so they can login to the container
and start work.
2. Production images, this image might have multiple variants:
- GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu`
- GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx`
- CPU/AVX::code:`paddlepaddle/paddle:<version>`
- CPU/no-AVX::code:`paddlepaddle/paddle:<version>-noavx`
Please be aware that the CPU-only and the GPU images both use the
AVX instruction set, but old computers produced before 2008 do not
support AVX. The following command checks if your Linux computer
supports AVX:
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
**NOTE:versions after 0.10.0 will automatically detect system AVX support, so manual detect is not needed in this case.**
To run the CPU-only image as an interactive container:
.. code-block:: bash
docker run -it --rm paddlepaddle/paddle:0.10.0 /bin/bash
Above method work with the GPU image too -- the recommended way is
using `nvidia-docker <https://github.com/NVIDIA/nvidia-docker>`_.
Please install nvidia-docker first following this `tutorial
<https://github.com/NVIDIA/nvidia-docker#quick-start>`_.
Now you can run a GPU image:
.. code-block:: bash
nvidia-docker run -it --rm paddlepaddle/paddle:0.10.0-gpu /bin/bash
Train Model Using Python API
----------------------------
Our official docker image provides a runtime for PaddlePaddle
programs. The typical workflow will be as follows:
Create a directory as workspace:
.. code-block:: bash
mkdir ~/workspace
Edit a PaddlePaddle python program using your favourite editor
.. code-block:: bash
emacs ~/workspace/example.py
Run the program using docker:
.. code-block:: bash
docker run --rm -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0 python /workspace/example.py
Or if you are using GPU for training:
docker pull paddlepaddle/paddle:latest-gpu
docker pull docker.paddlepaddle.org/paddle:latest-gpu
.. code-block:: bash
Choose between different BLAS version:
nvidia-docker run --rm -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0-gpu python /workspace/example.py
Above commands will start a docker container by running :code:`python
/workspace/example.py`. It will stop once :code:`python
/workspace/example.py` finishes.
Another way is to tell docker to start a :code:`/bin/bash` session and
run PaddlePaddle program interactively:
.. code-block:: bash
docker run -it -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0 /bin/bash
# now we are inside docker container
cd /workspace
python example.py
Running with GPU is identical:
.. code-block:: bash
nvidia-docker run -it -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0-gpu /bin/bash
# now we are inside docker container
cd /workspace
python example.py
Develop PaddlePaddle or Train Model Using C++ API
---------------------------------------------------
We will be using PaddlePaddle development image since it contains all
compiling tools and dependencies.
.. code-block:: bash
1. Build PaddlePaddle develop image
# image using MKL by default
docker pull paddlepaddle/paddle
# image using OpenBLAS
docker pull paddlepaddle/paddle:latest-openblas
Use following command to build PaddlePaddle develop image:
.. code-block:: bash
If you want to use legacy versions, choose a tag from
`DockerHub <https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_
and run:
git clone https://github.com/PaddlePaddle/Paddle.git && cd Paddle
docker build -t paddle:dev .
2. Build PaddlePaddle production image
.. code-block:: bash
There are two steps for building production image, the first step is to run:
docker pull paddlepaddle/paddle:[tag]
# i.e.
docker pull docker.paddlepaddle.org/paddle:0.10.0-gpu
.. code-block:: bash
.. _docker_run:
docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=OFF" -e "WITH_TEST=ON" paddle:dev
Launch your training program in Docker
------------------------------
The above command will compile PaddlePaddle and create a Dockerfile for building production image. All the generated files are in the build directory. "WITH_GPU" controls if the generated production image supports GPU. "WITH_AVX" controls if the generated production image supports AVX. "WITH_TEST" controls if the unit test will be generated.
Assume that you have already written a PaddlePaddle program
named :code:`train.py` under directory :code:`/home/work` (refer to
`PaddlePaddleBook <http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.cn.html>`_
for more samples), then run the following command:
The second step is to run:
.. code-block:: bash
.. code-block:: bash
cd /home/work
docker run -it -v $PWD:/work paddlepaddle/paddle /work/train.py
docker build -t paddle:prod -f build/Dockerfile ./build
In the above command, :code:`-it` means run the container interactively;
:code:`-v $PWD:/work` means mount the current directory ($PWD will expand
to current absolute path in Linux) under :code:`/work` in the container.
:code:`paddlepaddle/paddle` to specify image to use; finnally
:code:`/work/train.py` is the command to run inside docker.
The above command will generate the production image by copying the compiled PaddlePaddle program into the image.
Also, you can go into the container shell, run or debug your code
interactively:
3. Run unit test
.. code-block:: bash
docker run -it -v $PWD:/work paddlepaddle/paddle /bin/bash
cd /work
python train.py
Following command will run unit test:
**NOTE: We did not install vim in the default docker image to reduce the image size, you can run** :code:`apt-get install -y vim` **to install it if you need to edit python files.**
.. code-block:: bash
docker run -it -v $(pwd):/paddle paddle:dev bash -c "cd /paddle/build && ctest"
.. _docker_run_book:
PaddlePaddle Book
------------------
The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
We already exposed port 8888 for this book. If you want to
You can create a container serving PaddlePaddle Book using Jupyter Notebook in
one minute using Docker. PaddlePaddle Book is an interactive Jupyter Notebook
for users and developers.If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
We provide a packaged book image, simply issue the command:
.. code-block:: bash
.. code-block:: bash
docker run -p 8888:8888 paddlepaddle/book
docker run -p 8888:8888 paddlepaddle/book
Then, you would back and paste the address into the local browser:
.. code-block:: text
.. code-block:: text
http://localhost:8888/
http://localhost:8888/
That's all. Enjoy your journey!
.. _docker_run_gpu:
Documentation
-------------
Train with Docker with GPU
------------------------------
Paddle Docker images include an HTML version of C++ source code
generated using `woboq code browser
<https://github.com/woboq/woboq_codebrowser>`_. This makes it easy
for users to browse and understand the C++ source code.
We recommend using
`nvidia-docker <https://github.com/NVIDIA/nvidia-docker>`_
to run GPU training jobs. Please ensure you have latest
GPU driver installed before move on.
As long as we give the Paddle Docker container a name, we can run an
additional Nginx Docker container to serve the volume from the Paddle
container:
.. code-block:: bash
.. code-block:: bash
nvidia-docker run -it -v $PWD:/work paddledev/paddle:latest-gpu /bin/bash
docker run -d --name paddle-cpu-doc paddle:<version>
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
**NOTE: If you don't have nvidia-docker installed, try the following method to mount CUDA libs and devices into the container.**
.. code-block:: bash
Then we can direct our Web browser to the HTML version of source code
at http://localhost:8088/paddle/
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:latest-gpu
**About AVX:**
AVX is a kind of CPU instruction can accelerate PaddlePaddle's calculations.
The latest PaddlePaddle Docker image turns AVX on by default, so, if your
computer doesn't support AVX, you'll probably need to
`build <./build_from_source_en.rst>`_ with :code:`WITH_AVX=OFF`.
The following command will tell you whether your computer supports AVX.
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
......@@ -6,12 +6,13 @@
安装流程
++++++++
PaddlePaddle提供Docker镜像来部署环境。
PaddlePaddle提供pip和Docker的安装方式:
.. toctree::
:maxdepth: 1
docker_install_cn.rst
pip_install_cn.rst
docker_install_cn.rst
编译流程
......@@ -19,9 +20,14 @@ PaddlePaddle提供Docker镜像来部署环境。
.. warning::
编译流程主要推荐高级用户查看,普通用户请走安装流程
建议直接使用上述安装流程,方便快速安装。只有在遇到需要独立定制的二进制时才需要编译
.. toctree::
:maxdepth: 1
cmake/build_from_source_cn.rst
build_from_source_cn.rst
常见问题解答
++++++++++
`常见问题解答 <http://www.paddlepaddle.org/docs/develop/documentation/zh/faq/build_and_install/index_cn.html>`_
Install and Build
=================
Install PaddlePaddle
----------------------
.. _install_steps:
.. toctree::
:maxdepth: 1
Install Steps
++++++++
You can choose either pip or Docker to complete your install:
.. toctree::
:maxdepth: 1
pip_install_en.rst
docker_install_en.rst
docker_install_en.rst
Build from Source
-----------------
.. warning::
Please use :code:`docker` image to install paddle. The building guide is used for hacking or contributing PaddlePaddle source code.
We recommend to directly install via above installation steps, you'll only need to build PaddlePaddle from source when you need a modifed binary.
.. toctree::
:maxdepth: 1
build_from_source_en.md
FAQ
++++++++++
`FAQ <http://www.paddlepaddle.org/docs/develop/documentation/zh/faq/build_and_install/index_en.html>`_
使用pip安装PaddlePaddle
================================
PaddlePaddle可以使用常用的Python包管理工具
`pip <https://pip.pypa.io/en/stable/installing/>`_
完成安装,并可以在大多数主流的Linux操作系统以及MacOS上执行。
.. _pip_install:
使用pip安装
------------------------------
执行下面的命令即可在当前机器上安装PaddlePaddle的运行时环境,并自动下载安装依赖软件。
.. code-block:: bash
pip install paddlepaddle
如果需要安装支持GPU的版本,需要执行:
.. code-block:: bash
pip install paddlepaddle-gpu
如果需要获取并安装最新的(开发分支)PaddlePaddle,可以从我们的CI系统中下载最新的whl安装包和c-api开发包并安装,
您可以从下面的表格中找到需要的版本:
如果在点击下面链接时出现如下登陆界面,点击“Log in as guest”即可开始下载:
.. image:: paddleci.png
:scale: 50 %
:align: center
.. csv-table:: 各个版本最新的whl包
:header: "版本说明", "cp27-cp27mu", "cp27-cp27mu", "C-API"
:widths: 1, 3, 3, 3
"cpu_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cpu_avx_openblas", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "暂无"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
.. _pip_dependency:
运行环境依赖
------------------------------
PaddlePaddle安装包由于不仅仅包含.py程序,而且包含了C++编写的部分,所以我们确保发布的二进制包可以支持主流的Linux操作系统,比如CentOS 6以上,Ubuntu 14.04以上,MacOS 10.12以上。
PaddlePaddle发布的安装包会尽量对齐 `manylinux1 <https://www.python.org/dev/peps/pep-0513/#the-manylinux1-policy>`_ 标准,通常使用CentOS 5作为编译环境。但由于CUDA库通常需要CentOS 6以上,而且CentOS 5即将停止维护,所以我们默认使用CentOS 6作为标准编译环境。
.. csv-table:: PaddlePaddle环境依赖
:header: "依赖", "版本", "说明"
:widths: 10, 15, 30
"操作系统", "Linux, MacOS", "CentOS 6以上,Ubuntu 14.04以上,MacOS 10.12以上"
"Python", "2.7.x", "暂时不支持Python3"
"libc.so", "GLIBC_2.7", "glibc至少包含GLIBC_2.7以上的符号"
"libstdc++.so", "GLIBCXX_3.4.11, CXXABI_1.3.3", "至少包含GLIBCXX_3.4.11, CXXABI_1.3.3以上的符号"
"libgcc_s.so", "GCC_3.3", "至少包含GCC_3.3以上的符号"
.. _pip_faq:
安装常见问题和解决方法
------------------------------
- paddlepaddle*.whl is not a supported wheel on this platform.
出现这个问题的主要原因是,没有找到和当前系统匹配的paddlepaddle安装包。请检查Python版本是否为2.7系列。另外最新的pip官方源中的安装包默认是manylinux1标准,需要使用最新的pip (>9.0.0) 才可以安装。可以使用下面的命令更新您的pip:
.. code-block:: bash
pip install --upgrade pip
如果仍然存在问题,可以执行:
.. code-block:: bash
python -c "import pip; print(pip.pep425tags.get_supported())"
获取当前系统支持的安装包格式,并检查和需安装的包是否匹配。pypi安装包可以在 `这个 <https://pypi.python.org/pypi/paddlepaddle/0.10.5>`_ 链接中找到。
如果系统支持的是 linux_x86_64 而安装包是 manylinux1_x86_64 ,需要升级pip版本到最新; 如果系统支持 manylinux1_x86_64 而安装包(本地)是 linux_x86_64 ,可以重命名这个whl包为 manylinux1_x86_64 再安装。
\ No newline at end of file
Install PaddlePaddle Using pip
================================
You can use current widely used Python package management
tool `pip <https://pip.pypa.io/en/stable/installing/>`_
to install PaddlePaddle. This method can be used in
most of current Linux systems or MacOS.
.. _pip_install:
Install Using pip
------------------------------
Run the following command to install PaddlePaddle on the current
machine, it will also download requirements.
.. code-block:: bash
pip install paddlepaddle
If you wish to install GPU version, just run:
.. code-block:: bash
pip install paddlepaddle-gpu
If you wish to install the latest develop branch PaddlePaddle,
you can download the latest whl package from our CI system. Access
the below links, log in as guest, then click at the "Artifact"
tab, you'll find the download link of whl packages.
If the links below shows up the login form, just click "Log in as guest" to start the download:
.. image:: paddleci.png
:scale: 50 %
:align: center
.. csv-table:: whl package of each version
:header: "version", "cp27-cp27mu", "cp27-cp27mu", "C-API"
:widths: 1, 3, 3, 3
"cpu_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cpu_avx_openblas", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "Not Available"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
.. _pip_dependency:
Runtime Dependency
------------------------------
PaddlePaddle installation packages (whl) does not only contain .py files,
but also binaries built from C++ code. We ensure that PaddlePaddle can
run on current mainline Linux distributions, like CentOS 6, Ubuntu 14.04
and MacOS 10.12.
PaddlePaddle whl packages are trying to satisfy
`manylinux1 <https://www.python.org/dev/peps/pep-0513/#the-manylinux1-policy>`_
standard, which uses CentOS 5 as default build environment. But CUDA libraries
seems only run on CentOS 6 at least, also, CentOS 5 is about to end its lifetime,
so we use CentOS 6 as default build environment.
.. csv-table:: PaddlePaddle Runtime Deps
:header: "Dependency", "version", "description"
:widths: 10, 15, 30
"OS", "Linux, MacOS", "CentOS 6 or later,Ubuntu 14.04 or later,MacOS 10.12 or later"
"Python", "2.7.x", "Currently Python3 is not supported"
"libc.so", "GLIBC_2.7", "glibc at least include GLIBC_2.7 symbols"
"libstdc++.so", "GLIBCXX_3.4.11, CXXABI_1.3.3", "At least include GLIBCXX_3.4.11, CXXABI_1.3.3 symbols"
"libgcc_s.so", "GCC_3.3", "At least include GCC_3.3 symbols"
.. _pip_faq:
FAQ
------------------------------
- paddlepaddle*.whl is not a supported wheel on this platform.
The main cause of this issue is that your current platform is
not supported. Please check that you are using Python 2.7 series.
Besides, pypi only supports manylinux1 standard, you'll need to
upgrade your pip to >9.0.0. Then run the below command:
.. code-block:: bash
pip install --upgrade pip
If the problem still exists, run the following command:
.. code-block:: bash
python -c "import pip; print(pip.pep425tags.get_supported())"
Then you'll get supported package suffixes, then check if it matches
the file name of the whl package. You can find default whl package at
`here <https://pypi.python.org/pypi/paddlepaddle/0.10.5>`_
If your system supports linux_x86_64 but the whl package is manylinux1_x86_64,
you'll need to update pip to the latest version; If your system supports
manylinux1_x86_64 but the whl package is linux_x86_64 you can rename the
file to manylinux1_x86_64 suffix and then install.
新手入门
============
.. _quick_install:
快速安装
++++++++
PaddlePaddle支持使用pip快速安装,目前支持CentOS 6以上, Ubuntu 14.04以及MacOS 10.12,并安装有Python2.7。
执行下面的命令完成快速安装:
.. code-block:: bash
pip install paddlepaddle
如果需要安装支持GPU的版本,需要执行:
.. code-block:: bash
pip install paddlepaddle-gpu
更详细的安装和编译方法参考:
.. toctree::
:maxdepth: 1
build_and_install/index_cn.rst
concepts/use_concepts_cn.rst
- `深度学习入门课程 <http://book.paddlepaddle.org/index.cn.html>`_
.. _quick_start:
快速开始
++++++++
创建一个 housing.py 并粘贴此Python代码:
.. code-block:: python
import paddle.v2 as paddle
# Initialize PaddlePaddle.
paddle.init(use_gpu=False, trainer_count=1)
# Configure the neural network.
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
# Infer using provided test data.
probs = paddle.infer(
output_layer=y_predict,
parameters=paddle.dataset.uci_housing.model(),
input=[item for item in paddle.dataset.uci_housing.test()()])
for i in xrange(len(probs)):
print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000)
执行 :code:`python housing.py` 瞧! 它应该打印出预测住房数据的清单。
.. toctree::
:maxdepth: 1
concepts/use_concepts_cn.rst
GET STARTED
============
.. _quick_install:
Quick Install
----------------------
You can use pip to install PaddlePaddle with a single command, supports
CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed.
Simply run the following command to install:
.. code-block:: bash
pip install paddlepaddle
If you need to install GPU version, run:
.. code-block:: bash
pip install paddlepaddle-gpu
For more details about installation and build:
.. toctree::
:maxdepth: 1
build_and_install/index_en.rst
- `Deep Learning 101 <http://book.paddlepaddle.org/index.html>`_
.. _quick_start:
Quick Start
++++++++
Create a new file called housing.py, and paste this Python
code:
.. code-block:: python
import paddle.v2 as paddle
# Initialize PaddlePaddle.
paddle.init(use_gpu=False, trainer_count=1)
# Configure the neural network.
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
# Infer using provided test data.
probs = paddle.infer(
output_layer=y_predict,
parameters=paddle.dataset.uci_housing.model(),
input=[item for item in paddle.dataset.uci_housing.test()()])
for i in xrange(len(probs)):
print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000)
Run :code:`python housing.py` and voila! It should print out a list of predictions
for the test housing data.
......@@ -55,7 +55,7 @@ paddle_error paddle_matrix_set_row(paddle_matrix mat,
}
PD_API paddle_error paddle_matrix_set_value(paddle_matrix mat,
paddle_real* value) {
paddle_real* value) {
if (mat == nullptr || value == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (ptr->mat == nullptr) return kPD_NULLPTR;
......@@ -75,7 +75,7 @@ PD_API paddle_error paddle_matrix_set_value(paddle_matrix mat,
}
PD_API paddle_error paddle_matrix_get_value(paddle_matrix mat,
paddle_real* result) {
paddle_real* result) {
if (mat == nullptr || result == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (ptr->mat == nullptr) return kPD_NULLPTR;
......
......@@ -79,7 +79,7 @@ PD_API paddle_error paddle_matrix_set_row(paddle_matrix mat,
* @note value should contain enough element of data to init the mat
*/
PD_API paddle_error paddle_matrix_set_value(paddle_matrix mat,
paddle_real* value);
paddle_real* value);
/**
* @brief PDMatGetRow Get raw row buffer from matrix
......@@ -93,14 +93,14 @@ PD_API paddle_error paddle_matrix_get_row(paddle_matrix mat,
paddle_real** rawRowBuffer);
/**
* @brief copy data from the matrix
* @brief copy data from the matrix
* @param [in] mat Target matrix
* @param [out] result pointer to store the matrix data
* @param [out] result pointer to store the matrix data
* @return paddle_error
* @note the space of the result should allocated before invoke this API
*/
PD_API paddle_error paddle_matrix_get_value(paddle_matrix mat,
paddle_real* result);
paddle_real* result);
/**
* @brief PDMatCreateNone Create None Matrix
* @return
......
......@@ -135,18 +135,17 @@ inline void CopyToVector(const Tensor& src, const platform::DeviceContext& ctx,
auto dst_ptr = static_cast<void*>(dst->data());
if (platform::is_cpu_place(src.place())) {
memory::Copy(dst_place, dst_ptr, boost::get<platform::CPUPlace>(src.place()),
src_ptr, size);
memory::Copy(dst_place, dst_ptr,
boost::get<platform::CPUPlace>(src.place()), src_ptr, size);
}
#ifdef PADDLE_WITH_CUDA
else if (platform::is_gpu_place(src.place())) { // NOLINT
memory::Copy(
dst_place, dst_ptr, boost::get<platform::GPUPlace>(src.place()), src_ptr,
size,
dst_place, dst_ptr, boost::get<platform::GPUPlace>(src.place()),
src_ptr, size,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
}
#endif
}
} // namespace framework
......
......@@ -200,6 +200,7 @@ set(DEPS_OPS
lod_rank_table_op
lod_tensor_to_array_op
array_to_lod_tensor_op
max_sequence_len_op
lstm_op
tensor_array_read_write_op
gru_op
......@@ -222,6 +223,7 @@ op_library(pool_with_index_op DEPS pooling)
op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table)
op_library(lod_tensor_to_array_op SRCS lod_tensor_to_array_op.cc DEPS lod_rank_table_op)
op_library(array_to_lod_tensor_op SRCS array_to_lod_tensor_op.cc DEPS lod_rank_table_op)
op_library(max_sequence_len_op SRCS max_sequence_len_op.cc DEPS lod_rank_table)
op_library(tensor_array_read_write_op SRCS tensor_array_read_write_op.cc)
if(WITH_GPU)
op_library(nccl_op DEPS nccl_common)
......
......@@ -23,8 +23,7 @@ template <typename T>
class MaxOutFunctor<platform::CPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
framework::Tensor * output,
const framework::Tensor& input, framework::Tensor* output,
int groups) {
const int batch_size = input.dims()[0];
const int input_height = input.dims()[2];
......@@ -37,34 +36,30 @@ class MaxOutFunctor<platform::CPUPlace, T> {
T* output_data = output->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; ++i) {
int new_bindex = c_size * i;
int new_bindex = c_size * i;
for (int c = 0; c < output_channels; ++c) {
int new_cindex = fea_size * c;
for (int f = 0; f < fea_size; ++f) {
T ele = static_cast<T>(-FLT_MAX);
for (int ph = 0; ph < groups; ++ph) {
T x = input_data[(new_bindex + new_cindex) * groups
+ ph * fea_size + f];
T x = input_data[(new_bindex + new_cindex) * groups +
ph * fea_size + f];
ele = ele > x ? ele : x;
}
output_data[(new_bindex+new_cindex+f)] = ele;
output_data[(new_bindex + new_cindex + f)] = ele;
}
}
}
}
};
template <class T>
class MaxOutGradFunctor<platform::CPUPlace, T> {
public:
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
framework::Tensor * input_grad,
const framework::Tensor& input, framework::Tensor* input_grad,
const framework::Tensor& output,
const framework::Tensor& output_grad,
int groups) {
const framework::Tensor& output_grad, int groups) {
const int batch_size = input.dims()[0];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
......@@ -84,11 +79,11 @@ public:
bool continue_match = true;
int output_idx = blen + clen + f;
for (int g = 0; g < groups && continue_match; ++g) {
int input_idx = input_idx0 + fea_size * g;
if (input_data[input_idx] == output_data[output_idx]) {
input_grad_data[input_idx] += output_grad_data[output_idx];
continue_match = false;
}
int input_idx = input_idx0 + fea_size * g;
if (input_data[input_idx] == output_data[output_idx]) {
input_grad_data[input_idx] += output_grad_data[output_idx];
continue_match = false;
}
}
}
}
......
......@@ -21,9 +21,9 @@ namespace math {
template <typename T>
__global__ void KernelMaxOut(const int nthreads, const T* input_data,
const int channels,
const int input_height, const int input_width,
int groups, T* output_data ) {
const int channels, const int input_height,
const int input_width, int groups,
T* output_data) {
const int size = input_height * input_width * channels / groups;
const int feat_len = input_height * input_width;
int index = blockIdx.x * blockDim.x + threadIdx.x;
......@@ -34,7 +34,7 @@ __global__ void KernelMaxOut(const int nthreads, const T* input_data,
int channel_idx = batch_offset / feat_len;
int feat_idx = batch_offset % feat_len;
int data_idx =
(batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
(batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
T ele = static_cast<T>(-FLT_MAX);
for (int g = 0; g < groups; ++g) {
T x = input_data[data_idx + g * feat_len];
......@@ -44,34 +44,35 @@ __global__ void KernelMaxOut(const int nthreads, const T* input_data,
}
}
template <typename T>
__global__ void KernelMaxoutGrad(
const int nthreads, const T* input_data, const T* output_data,
const T* output_grad, T* input_grad, const int channels,
const int input_height, const int input_width, int groups) {
const int size = input_height * input_width * channels / groups;
const int feat_len = input_height * input_width;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int offset = blockDim.x * gridDim.x;
for (int i = index; i < nthreads; i += offset) {
int batch_idx = i / size;
int batch_offset = i % size;
int channel_idx = batch_offset / feat_len;
int feat_idx = batch_offset % feat_len;
int data_idx =
__global__ void KernelMaxoutGrad(const int nthreads, const T* input_data,
const T* output_data, const T* output_grad,
T* input_grad, const int channels,
const int input_height, const int input_width,
int groups) {
const int size = input_height * input_width * channels / groups;
const int feat_len = input_height * input_width;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int offset = blockDim.x * gridDim.x;
for (int i = index; i < nthreads; i += offset) {
int batch_idx = i / size;
int batch_offset = i % size;
int channel_idx = batch_offset / feat_len;
int feat_idx = batch_offset % feat_len;
int data_idx =
(batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
int max_index = -1;
bool continue_match = true;
for (int g = 0; g < groups && continue_match; ++g) {
if (input_data[data_idx + g * feat_len] == output_data[i]) {
max_index = data_idx + g * feat_len;
continue_match = false;
break;
}
}
if (max_index != -1) {
input_grad[max_index] += output_grad[index];
int max_index = -1;
bool continue_match = true;
for (int g = 0; g < groups && continue_match; ++g) {
if (input_data[data_idx + g * feat_len] == output_data[i]) {
max_index = data_idx + g * feat_len;
continue_match = false;
break;
}
}
if (max_index != -1) {
input_grad[max_index] += output_grad[index];
}
}
}
/*
* All tensors are in NCHW format.
......@@ -80,7 +81,7 @@ template <typename T>
class MaxOutFunctor<platform::GPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor * output,
const framework::Tensor& input, framework::Tensor* output,
int groups) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
......@@ -92,7 +93,7 @@ class MaxOutFunctor<platform::GPUPlace, T> {
const T* input_data = input.data<T>();
T* output_data = output->mutable_data<T>(context.GetPlace());
int nthreads = output->numel();
int nthreads = output->numel();
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
......@@ -101,8 +102,7 @@ class MaxOutFunctor<platform::GPUPlace, T> {
T><<<grid, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(nthreads, input_data, input_channels,
input_height, input_width, groups,
output_data);
input_height, input_width, groups, output_data);
}
};
/*
......@@ -112,11 +112,9 @@ template <typename T>
class MaxOutGradFunctor<platform::GPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
framework::Tensor * input_grad,
const framework::Tensor& input, framework::Tensor* input_grad,
const framework::Tensor& output,
const framework::Tensor& output_grad,
int groups) {
const framework::Tensor& output_grad, int groups) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
const int input_height = input.dims()[2];
......@@ -129,7 +127,7 @@ class MaxOutGradFunctor<platform::GPUPlace, T> {
const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
int nthreads = output.numel();
int nthreads = output.numel();
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
......@@ -137,9 +135,9 @@ class MaxOutGradFunctor<platform::GPUPlace, T> {
KernelMaxoutGrad<
T><<<grid, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(
nthreads, input_data, output_data, output_grad_data, input_grad_data,
input_channels, input_height, input_width, groups);
.stream()>>>(nthreads, input_data, output_data,
output_grad_data, input_grad_data, input_channels,
input_height, input_width, groups);
}
};
......
......@@ -21,15 +21,14 @@ namespace paddle {
namespace operators {
namespace math {
#define FLT_MAX \
__FLT_MAX__
#define FLT_MAX __FLT_MAX__
template <typename Place, typename T>
class MaxOutFunctor {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor * output,
const framework::Tensor& input, framework::Tensor* output,
int groups);
};
......@@ -37,8 +36,7 @@ template <typename Place, class T>
class MaxOutGradFunctor {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
framework::Tensor * input_grad,
const framework::Tensor& input, framework::Tensor* input_grad,
const framework::Tensor& output,
const framework::Tensor& output_grad, int groups);
};
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace operators {
class MaxSeqenceLenOp : public framework::OperatorBase {
public:
MaxSeqenceLenOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto &rank_table =
scope.FindVar(Input("RankTable"))->Get<framework::LoDRankTable>();
auto *out =
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
int64_t *out_ptr = out->mutable_data<int64_t>({1}, platform::CPUPlace());
*out_ptr = rank_table.items()[0].length;
}
};
class MaxSeqenceLenOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
MaxSeqenceLenOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("RankTable", "The lod_rank_table.");
AddOutput("Out", "The max sequence length.");
AddComment(
R"DOC(Calculate the max sequence length through lod_rank_table.)DOC");
}
};
class MaxSeqenceLenInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("RankTable"));
context->SetOutputDim("Out", {1});
}
};
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(max_sequence_len, paddle::operators::MaxSeqenceLenOp,
paddle::operators::MaxSeqenceLenOpProtoMaker,
paddle::operators::MaxSeqenceLenInferShape,
paddle::framework::EmptyGradOpMaker);
......@@ -22,16 +22,17 @@ class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MaxOutOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
AddInput(
"X",
"(Tensor) The input tensor of maxout operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature.");
AddOutput("Out",
"(Tensor) The output tensor of maxout operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of feature.");
"(Tensor) The output tensor of maxout operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of feature.");
AddAttr<int>(
"groups",
R"DOC("Specifies how many groups the input tensor will be split"
......@@ -59,21 +60,19 @@ class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
}
};
class MaxOutOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MaxoutOp"
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of MaxoutOp"
"should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of MaxoutOp should not be null.");
auto in_x_dims = ctx->GetInputDim("X");
int groups = ctx->Attrs().Get<int>("groups");
// check groups > 1
PADDLE_ENFORCE_GT(
groups, 1,
"groups should be larger than 1 in maxoutop");
PADDLE_ENFORCE_GT(groups, 1, "groups should be larger than 1 in maxoutop");
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1] / groups});
output_shape.push_back(in_x_dims[2]);
output_shape.push_back(in_x_dims[3]);
......@@ -87,18 +86,17 @@ class MaxOutOpGrad : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Input(X@GRAD) should not be null.");
"Input(X@GRAD) should not be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
} // namespace operators
} // namespace paddle
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(maxout, ops::MaxOutOp, ops::MaxOutOpMaker, maxout_grad,
ops::MaxOutOpGrad);
REGISTER_OP_CPU_KERNEL(maxout, ops::MaxOutKernel<paddle::platform::CPUPlace,
float>);
REGISTER_OP_CPU_KERNEL(maxout_grad,
ops::MaxOutGradKernel<paddle::platform::CPUPlace,
float>);
ops::MaxOutOpGrad);
REGISTER_OP_CPU_KERNEL(maxout,
ops::MaxOutKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
maxout_grad, ops::MaxOutGradKernel<paddle::platform::CPUPlace, float>);
......@@ -18,8 +18,6 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(maxout,
ops::MaxOutKernel<paddle::platform::GPUPlace, float>,
ops::MaxOutKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(maxout_grad,
ops::MaxOutGradKernel<paddle::platform::GPUPlace,
float>,
ops::MaxOutGradKernel<paddle::platform::GPUPlace,
double>);
REGISTER_OP_GPU_KERNEL(
maxout_grad, ops::MaxOutGradKernel<paddle::platform::GPUPlace, float>,
ops::MaxOutGradKernel<paddle::platform::GPUPlace, double>);
......@@ -53,7 +53,7 @@ class MaxOutGradKernel : public framework::OpKernel<T> {
zero(device_ctx, in_x_grad, static_cast<T>(0.0));
math::MaxOutGradFunctor<Place, T> maxout_backward;
maxout_backward(context.device_context(), *in_x, in_x_grad, *out,
*out_grad, groups);
*out_grad, groups);
}
}
};
......
......@@ -43,8 +43,8 @@ class ROIPoolOp : public framework::OperatorWithKernel {
"ROIs should be a 2-D tensor of shape (num_rois, 5)"
"given as [[batch_id, x1, y1, x2, y2], …].");
PADDLE_ENFORCE(rois_dims[1] == kROISize,
"ROIs should be a 2-D tensor of shape (num_rois, 5)"
"given as [[batch_id, x1, y1, x2, y2], …].");
"ROIs should be a 2-D tensor of shape (num_rois, 5)"
"given as [[batch_id, x1, y1, x2, y2], …].");
int pooled_height = ctx->Attrs().Get<int>("pooled_height");
int pooled_width = ctx->Attrs().Get<int>("pooled_width");
......@@ -65,7 +65,7 @@ class ROIPoolOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("Out", out_dims);
ctx->SetOutputDim("Argmax", out_dims);
}
}
protected:
framework::OpKernelType GetKernelType(
......@@ -100,7 +100,7 @@ class ROIPoolGradOp : public framework::OperatorWithKernel {
class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ROIPoolOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(Tensor), "
......@@ -125,21 +125,22 @@ class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor), "
"Argmaxes corresponding to indices in X used "
"for gradient computation. Only output "
"if arg “is_test” is false.").AsIntermediate();
"if arg “is_test” is false.")
.AsIntermediate();
AddAttr<float>("spatial_scale",
"(float, default 1.0), "
"Multiplicative spatial scale factor "
"to translate ROI coords from their input scale "
"to the scale used when pooling.")
.SetDefault(1.0);
.SetDefault(1.0);
AddAttr<int>("pooled_height",
"(int, default 1), "
"The pooled output height.")
.SetDefault(1);
.SetDefault(1);
AddAttr<int>("pooled_width",
"(int, default 1), "
"The pooled output width.")
.SetDefault(1);
.SetDefault(1);
AddComment(R"DOC(
ROIPool operator
......@@ -153,11 +154,10 @@ https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker,
roi_pool_grad, ops::ROIPoolGradOp);
REGISTER_OP(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker, roi_pool_grad,
ops::ROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(
roi_pool,
ops::CPUROIPoolOpKernel<paddle::platform::CPUPlace, float>,
roi_pool, ops::CPUROIPoolOpKernel<paddle::platform::CPUPlace, float>,
ops::CPUROIPoolOpKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(
roi_pool_grad,
......
......@@ -29,101 +29,95 @@ static inline int NumBlocks(const int N) {
kNumMaxinumNumBlocks);
}
template <typename T>
__global__ void GPUROIPoolForward(
const int nthreads, const T* input_data, const int64_t* input_rois,
const float spatial_scale, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
T* output_data, int64_t* argmax_data) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int offset = blockDim.x * gridDim.x;
for (size_t i = index; i < nthreads; i += offset) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const int64_t* offset_input_rois = input_rois + n * kROISize;
int roi_batch_ind = offset_input_rois[0];
int roi_start_w = round(offset_input_rois[1] * spatial_scale);
int roi_start_h = round(offset_input_rois[2] * spatial_scale);
int roi_end_w = round(offset_input_rois[3] * spatial_scale);
int roi_end_h = round(offset_input_rois[4] * spatial_scale);
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));
hstart = min(max(hstart + roi_start_h, 0), height);
hend = min(max(hend + roi_start_h, 0), height);
wstart = min(max(wstart + roi_start_w, 0), width);
wend = min(max(wend + roi_start_w, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
T maxval = is_empty ? 0 : -std::numeric_limits<T>::max();
int maxidx = -1;
const T* offset_input_data =
input_data + (roi_batch_ind * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int input_data_index = h * width + w;
if (offset_input_data[input_data_index] > maxval) {
maxval = offset_input_data[input_data_index];
maxidx = input_data_index;
}
template <typename T>
__global__ void GPUROIPoolForward(const int nthreads, const T* input_data,
const int64_t* input_rois,
const float spatial_scale, const int channels,
const int height, const int width,
const int pooled_height,
const int pooled_width, T* output_data,
int64_t* argmax_data) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int offset = blockDim.x * gridDim.x;
for (size_t i = index; i < nthreads; i += offset) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const int64_t* offset_input_rois = input_rois + n * kROISize;
int roi_batch_ind = offset_input_rois[0];
int roi_start_w = round(offset_input_rois[1] * spatial_scale);
int roi_start_h = round(offset_input_rois[2] * spatial_scale);
int roi_end_w = round(offset_input_rois[3] * spatial_scale);
int roi_end_h = round(offset_input_rois[4] * spatial_scale);
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));
hstart = min(max(hstart + roi_start_h, 0), height);
hend = min(max(hend + roi_start_h, 0), height);
wstart = min(max(wstart + roi_start_w, 0), width);
wend = min(max(wend + roi_start_w, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
T maxval = is_empty ? 0 : -std::numeric_limits<T>::max();
int maxidx = -1;
const T* offset_input_data =
input_data + (roi_batch_ind * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int input_data_index = h * width + w;
if (offset_input_data[input_data_index] > maxval) {
maxval = offset_input_data[input_data_index];
maxidx = input_data_index;
}
}
output_data[index] = maxval;
if (argmax_data) {
argmax_data[index] = maxidx;
}
}
output_data[index] = maxval;
if (argmax_data) {
argmax_data[index] = maxidx;
}
}
}
template <typename T>
__global__ void GPUROIPoolBackward(
const int nthreads,
const int64_t* input_rois,
const T* output_grad,
const int64_t* argmax_data,
const int num_rois,
const float spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
T* input_grad) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int offset = blockDim.x * gridDim.x;
for (int i = index; i < nthreads; i += offset) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const int64_t* offset_input_rois = input_rois + n * kROISize;
int roi_batch_ind = offset_input_rois[0];
int input_offset = (roi_batch_ind * channels + c) * height * width;
int output_offset = (n * channels + c) * pooled_height * pooled_width;
const T* offset_output_grad = output_grad + output_offset;
T* offset_input_grad = input_grad + input_offset;
const int64_t* offset_argmax_data = argmax_data + output_offset;
int argmax = offset_argmax_data[ph * pooled_width + pw];
if (argmax != -1) {
platform::CudaAtomicAdd(offset_input_grad + argmax,
const int nthreads, const int64_t* input_rois, const T* output_grad,
const int64_t* argmax_data, const int num_rois, const float spatial_scale,
const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, T* input_grad) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int offset = blockDim.x * gridDim.x;
for (int i = index; i < nthreads; i += offset) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
const int64_t* offset_input_rois = input_rois + n * kROISize;
int roi_batch_ind = offset_input_rois[0];
int input_offset = (roi_batch_ind * channels + c) * height * width;
int output_offset = (n * channels + c) * pooled_height * pooled_width;
const T* offset_output_grad = output_grad + output_offset;
T* offset_input_grad = input_grad + input_offset;
const int64_t* offset_argmax_data = argmax_data + output_offset;
int argmax = offset_argmax_data[ph * pooled_width + pw];
if (argmax != -1) {
platform::CudaAtomicAdd(
offset_input_grad + argmax,
static_cast<T>(offset_output_grad[ph * pooled_width + pw]));
}
}
}
}
template <typename Place, typename T>
class GPUROIPoolOpKernel : public framework::OpKernel<T> {
......@@ -145,25 +139,18 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
int width = in_dims[3];
size_t rois_num = rois->dims()[0];
if (rois_num== 0) return;
if (rois_num == 0) return;
int output_size = out->numel();
int blocks = NumBlocks(output_size);
int threads = kNumCUDAThreads;
GPUROIPoolForward<T>
<<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
output_size,
in->data<T>(),
rois->data<int64_t>(),
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
out->mutable_data<T>(ctx.GetPlace()),
argmax->mutable_data<int64_t>(ctx.GetPlace()));
GPUROIPoolForward<
T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
output_size, in->data<T>(), rois->data<int64_t>(), spatial_scale,
channels, height, width, pooled_height, pooled_width,
out->mutable_data<T>(ctx.GetPlace()),
argmax->mutable_data<int64_t>(ctx.GetPlace()));
}
};
......@@ -175,10 +162,8 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
auto* rois = ctx.Input<Tensor>("ROIs");
auto* argmax = ctx.Input<Tensor>("Argmax");
auto* out_grad =
ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* x_grad =
ctx.Output<Tensor>(framework::GradVarName("X"));
auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto pooled_height = ctx.Attr<int>("pooled_height");
auto pooled_width = ctx.Attr<int>("pooled_width");
......@@ -199,21 +184,13 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
int threads = kNumCUDAThreads;
if (output_grad_size > 0) {
GPUROIPoolBackward<T>
<<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
output_grad_size,
rois->data<int64_t>(),
out_grad->data<T>(),
argmax->data<int64_t>(),
rois_num,
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
x_grad->mutable_data<T>(ctx.GetPlace()));
}
GPUROIPoolBackward<
T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
output_grad_size, rois->data<int64_t>(), out_grad->data<T>(),
argmax->data<int64_t>(), rois_num, spatial_scale, channels, height,
width, pooled_height, pooled_width,
x_grad->mutable_data<T>(ctx.GetPlace()));
}
}
}
};
......@@ -223,8 +200,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
roi_pool,
ops::GPUROIPoolOpKernel<paddle::platform::GPUPlace, float>,
roi_pool, ops::GPUROIPoolOpKernel<paddle::platform::GPUPlace, float>,
ops::GPUROIPoolOpKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(
roi_pool_grad,
......
......@@ -45,7 +45,7 @@ class SequenceSliceOp : public framework::OperatorWithKernel {
// Initialize the output's dims to maximum,
// and re-set to real dims by the value of Offset and Length at kernel
ctx->SetOutputDim("Out", input_dims);
}
}
protected:
framework::OpKernelType GetKernelType(
......@@ -93,8 +93,7 @@ class SequenceSliceOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor), "
"a vector<int> to describe the length of every input sequence for "
"sub sequence item.");
AddOutput("Out",
"(LoDTensor), the output of SequenceSliceOp.");
AddOutput("Out", "(LoDTensor), the output of SequenceSliceOp.");
AddComment(R"DOC(
Sequence slice operator
......
......@@ -57,11 +57,21 @@ class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker {
ShrinkRNNMemoryOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "");
AddInput("RankTable", "");
AddInput("I", "");
AddOutput("Out", "");
AddComment("");
AddInput("X", "(LoDTensor) The RNN step memory to be shrinked.");
AddInput("RankTable", "(LoDRankTable) The lod_rank_table of dynamic RNN.");
AddInput("I",
"(LoDTensor) The step index. The RNN step memory 'X' will be "
"shrinked to match the size of the input of the index'th step.");
AddOutput("Out", "(LoDTensor) The shrinked RNN step memory.");
AddComment(
R"DOC(
In dynamic RNN, we are able to handle sequences of different lengths.
Because of the multiple lengths, the size of each step input can be
different, which may lead to a mismatching between the input of
the current step and the memory generated by the previous one. This
operator shrinks memory according to the size of the next step input,
to make sure that they can match each other.
)DOC");
}
};
......
......@@ -2798,19 +2798,18 @@ class AddToLayer(LayerBase):
name, self.layer_type, 0, inputs=inputs, **xargs)
config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
if len(self.inputs) > 1:
for input_index in xrange(len(self.inputs)):
assert self.get_input_layer(0).height == self.get_input_layer(
input_index).height
assert self.get_input_layer(0).width == self.get_input_layer(
input_index).width
assert self.get_input_layer(0).depth == self.get_input_layer(
input_index).depth
layer_size = self.get_input_layer(0).size
# To reserve heght, width, depth.
layer_with_hwc = self.get_input_layer(0)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
assert layer_size == input_layer.size
if input_layer.height and input_layer.height and input_layer.height:
layer_with_hwc = input_layer
self.set_layer_size(self.get_input_layer(0).size)
self.set_layer_height_width(self.get_input_layer(0).height, \
self.get_input_layer(0).width)
self.set_layer_depth(self.get_input_layer(0).depth)
self.set_layer_size(layer_with_hwc.size)
self.set_layer_height_width(layer_with_hwc.height, layer_with_hwc.width)
self.set_layer_depth(layer_with_hwc.depth)
self.create_bias_parameter(bias, self.config.size)
......
......@@ -1900,9 +1900,12 @@ def repeat_layer(input,
A layer for repeating the input for num_repeats times.
If as_row_vector:
.. math::
y = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
If not as_row_vector:
.. math::
y = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]
......@@ -1915,19 +1918,19 @@ def repeat_layer(input,
:param input: The input of this layer.
:type input: LayerOutput
:param num_repeats: Repeat the input so many times
:param num_repeats: The times of repeating the input.
:type num_repeats: int
:param name: The name of this layer. It is optional.
:param as_row_vector: True for treating input as row vector and repeating
in the column direction. This is equivalent to apply
concat_layer() with num_repeats same input.
False for treating input as column vector and repeating
in the row direction.
:type name: basestring
:param as_row_vector: Whether to treat the input as row vectors or not. If
the parameter is set to True, the repeating operation
will be performed in the column direction. Otherwise,
it will be performed in the row direction.
:type as_row_vector: bool
:param act: Activation type. IdentityActivation is the default activation.
:type act: BaseActivation
:type name: basestring
:param layer_attr: extra layer attributes.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -1974,13 +1977,14 @@ def seq_reshape_layer(input,
:param input: The input of this layer.
:type input: LayerOutput
:param reshape_size: the size of reshaped sequence.
:param reshape_size: The dimension of the reshaped sequence.
:type reshape_size: int
:param name: The name of this layer. It is optional.
:type name: basestring
:param act: Activation type. IdentityActivation is the default activation.
:type act: BaseActivation
:param layer_attr: extra layer attributes.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute.
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
......@@ -2008,7 +2012,7 @@ def seq_reshape_layer(input,
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
"""
This layer is for linear interpolation with two inputs,
This layer performs linear interpolation on two inputs,
which is used in NEURAL TURING MACHINE.
.. math::
......@@ -2030,7 +2034,8 @@ def interpolation_layer(input, weight, name=None, layer_attr=None):
:type weight: LayerOutput
:param name: The name of this layer. It is optional.
:type name: basestring
:param layer_attr: extra layer attributes.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -2064,7 +2069,7 @@ def bilinear_interp_layer(input,
name=None,
layer_attr=None):
"""
This layer is to implement bilinear interpolation on conv layer output.
This layer implements bilinear interpolation on convolutional layer's output.
Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation
......@@ -2074,18 +2079,19 @@ def bilinear_interp_layer(input,
bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
:param input: A input layer.
:type input: LayerOutput.
:param out_size_x: bilinear interpolation output width.
:type out_size_x: int | None
:param out_size_y: bilinear interpolation output height.
:type out_size_y: int | None
:param name: The layer's name, which cna not be specified.
:type name: None | basestring
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:param input: The input of this layer.
:type input: LayerOutput.
:param out_size_x: The width of the output.
:type out_size_x: int
:param out_size_y: The height of the output.
:type out_size_y: int
:param name: The name of this layer. It is optional.
:type name: basestring
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
:rtype: LayerOutput
"""
assert input.layer_type == LayerType.CONV_LAYER
assert isinstance(input.activation, LinearActivation)
......@@ -2120,8 +2126,8 @@ def power_layer(input, weight, name=None, layer_attr=None):
.. math::
y = x^w
where :math:`x` is a input vector, :math:`w` is scalar weight,
and :math:`y` is a output vector.
where :math:`x` is an input vector, :math:`w` is a scalar exponent,
and :math:`y` is an output vector.
The example usage is:
......@@ -2131,11 +2137,12 @@ def power_layer(input, weight, name=None, layer_attr=None):
:param input: The input of this layer.
:type input: LayerOutput
:param weight: Weight layer.
:param weight: The exponent of the power.
:type weight: LayerOutput
:param name: The name of this layer. It is optional.
:type name: basestring
:param layer_attr: extra layer attributes.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -2175,11 +2182,12 @@ def scaling_layer(input, weight, name=None, layer_attr=None):
:param input: The input of this layer.
:type input: LayerOutput
:param weight: Weight layer.
:param weight: The weight of each sample.
:type weight: LayerOutput
:param name: The name of this layer. It is optional.
:type name: basestring
:param layer_attr: extra layer attributes.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -2217,7 +2225,8 @@ def trans_layer(input, name=None, layer_attr=None):
:type input: LayerOutput
:param name: The name of this layer. It is optional.
:type name: basestring
:param layer_attr: extra layer attributes.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -2253,11 +2262,14 @@ def rotate_layer(input, height, width, name=None, layer_attr=None):
:param input: The input of this layer.
:type input: LayerOutput
:param height: The height of the sample matrix
:param height: The height of the sample matrix.
:type height: int
:param width: The width of the sample matrix.
:type width: int
:param name: The name of this layer. It is optional.
:type name: basestring
:param layer_attr: extra layer attributes.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -2302,15 +2314,15 @@ def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
:param name: The name of this layer. It is optional.
:type name: basestring
:param a: input layer a
:param a: The first input of this layer.
:type a: LayerOutput
:param b: input layer b
:param b: The second input of this layer.
:type b: LayerOutput
:param scale: scale for cosine value. default is 5.
:param scale: The scale of the cosine similarity. 1 is the default value.
:type scale: float
:param size: layer size. NOTE size_a * size should equal size_b.
:param size: The dimension of this layer. NOTE size_a * size should equal size_b.
:type size: int
:param layer_attr: Extra Layer Attribute.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -2395,8 +2407,10 @@ def hsigmoid(input,
"""
Organize the classes into a binary tree. At each node, a sigmoid function
is used to calculate the probability of belonging to the right branch.
This idea is from "F. Morin, Y. Bengio (AISTATS 05):
Hierarchical Probabilistic Neural Network Language Model."
Reference:
`Hierarchical Probabilistic Neural Network Language Model
<http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
The example usage is:
......@@ -2407,19 +2421,21 @@ def hsigmoid(input,
:param input: The input of this layer.
:type input: LayerOutput | list | tuple
:param label: Label layer.
:param label: The input label.
:type label: LayerOutput
:param num_classes: number of classes.
:type num_classes: int | None
:param num_classes: The number of classes. And it should be larger than 2. If the parameter
is not set or set to None, its actual value will be automatically set to
the number of labels.
:type num_classes: int
:param name: The name of this layer. It is optional.
:type name: basestring
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any
:param param_attr: Parameter Attribute. None means default parameter.
:type param_attr: ParameterAttribute | None
:param layer_attr: Extra Layer Attribute.
:param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -4241,7 +4257,7 @@ def dot_prod_layer(input1, input2, name=None, layer_attr=None):
:param name: The name of this layer. It is optional.
:type name: basestring
:param input1: The first input layer.
:type input: LayerOutput
:type input1: LayerOutput
:param input2: The second input layer.
:type input2: LayerOutput
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
......
......@@ -38,6 +38,7 @@ UCI_TEST_DATA = None
URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fit_a_line.tar'
MD5_MODEL = '52fc3da8ef3937822fcdd87ee05c0c9b'
def feature_range(maximums, minimums):
import matplotlib
matplotlib.use('Agg')
......@@ -114,7 +115,8 @@ def test():
def model():
tar_file = paddle.v2.dataset.common.download(URL_MODEL, 'fit_a_line.tar', MD5_MODEL)
tar_file = paddle.v2.dataset.common.download(URL_MODEL, 'fit_a_line.tar',
MD5_MODEL)
with open(tar_file, 'r') as f:
parameters = Parameters.from_tar(f)
return parameters
......
import sys
import core
__all__ = ['proto']
argv = []
if core.is_compile_gpu():
argv = list(sys.argv) + [
"--tryfromenv=fraction_of_gpu_memory_to_use,use_pinned_memory"
]
else:
argv = list(sys.argv) + ["--tryfromenv=use_pinned_memory"]
core.init_gflags(argv)
# import all class inside framework into fluid module
import framework
from framework import *
# import all class inside executor into fluid module
import executor
from executor import *
import io
import evaluator
import initializer
import layers
import nets
import optimizer
import backward
import regularizer
from core import LoDTensor, CPUPlace, GPUPlace
Tensor = LoDTensor
__all__ = framework.__all__ + executor.__all__ + [
'io', 'initializer', 'layers', 'nets', 'optimizer', 'backward',
'regularizer', 'LoDTensor', 'CPUPlace', 'GPUPlace', 'Tensor'
]
def __read_gflags_from_env__():
"""
Enable reading gflags from environment variables.
Returns:
None
"""
import sys
import core
read_env_flags = ['use_pinned_memory']
if core.is_compile_gpu():
read_env_flags.append('fraction_of_gpu_memory_to_use')
core.init_gflags(sys.argv + ["--tryfromenv=" + ",".join(read_env_flags)])
__read_gflags_from_env__()
import numpy as np
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program, unique_name, \
Variable
from paddle.v2.fluid.layer_helper import LayerHelper
import layers
from framework import Program, unique_name, Variable
from layer_helper import LayerHelper
__all__ = ['Accuracy']
......
import numpy as np
import paddle.v2.fluid.core as core
from paddle.v2.fluid.framework import Block, Program, g_main_program
from . import core
from framework import Program, g_main_program
__all__ = ['Executor', 'g_scope']
g_scope = core.Scope()
......
import paddle.v2.fluid.core as core
import paddle.v2.fluid.proto.framework_pb2 as framework_pb2
import collections
import numpy as np
import copy
from . import core
import proto.framework_pb2 as framework_pb2
__all__ = [
'Block', 'Variable', 'Program', 'Operator', 'default_startup_program',
'default_main_program'
'default_main_program', 'g_startup_program', 'g_main_program'
]
......@@ -395,7 +395,11 @@ class Block(object):
return v
def all_parameters(self):
return {v for k, v in self.vars.iteritems() if isinstance(v, Parameter)}
return list(self.iter_parameters())
def iter_parameters(self):
return (item[1] for item in self.vars.iteritems()
if isinstance(item[1], Parameter))
def create_var(self, *args, **kwargs):
var = Variable(self, *args, **kwargs)
......@@ -469,6 +473,37 @@ class Block(object):
for index in range(len(self.ops)):
assert self.ops[index].desc == ops_in_cpp[index]
def copy_param_info_from(self, other):
"""
Copy the information of parameters from other block
Args:
other(Block): other block
Returns:
None
"""
if not isinstance(other, Block):
raise TypeError("copy_param_info_from should be invoked with Block")
for p in other.iter_parameters():
assert isinstance(p, Parameter)
v = self.vars.get(p.name, None)
if v is None:
raise ValueError("copy_param_info_from should be invoked with "
"same topology")
assert isinstance(v, Variable)
new_p = Parameter(
block=self,
shape=v.shape,
dtype=v.dtype,
type=v.type,
lod_level=v.lod_level,
stop_gradient=p.stop_gradient,
trainable=p.trainable,
optimize_attr=p.optimize_attr,
regularizer=p.regularizer,
name=v.name)
self.vars[new_p.name] = new_p
class Program(object):
def __init__(self):
......@@ -489,6 +524,7 @@ class Program(object):
p.desc = core.ProgramDesc(self.desc)
p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
p.sync_with_cpp()
p.copy_param_info_from(self)
return p
def prune(self, targets):
......@@ -572,6 +608,24 @@ class Program(object):
for block in self.blocks:
block.sync_with_cpp()
def copy_param_info_from(self, other):
"""
Copy the information of parameters from other program.
Args:
other(Program): Other program
Returns:
None
"""
if not isinstance(other, Program):
raise TypeError("copy_param_info_from should be invoked with "
"Program")
if len(self.blocks) != len(other.blocks):
raise ValueError("copy_param_info_from should be invoked with two "
"program, with represent the same topology")
self.global_block().copy_param_info_from(other.global_block())
def list_vars(self):
for each_block in self.blocks:
for each_var in each_block.vars.itervalues():
......
import paddle.v2.fluid.framework as framework
import framework
import numpy as np
__all__ = [
'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
'XavierInitializer'
]
__all__ = ['Constant', 'Uniform', 'Normal', 'Xavier']
class Initializer(object):
......@@ -368,3 +365,19 @@ class MSRAInitializer(Initializer):
})
var.op = op
return op
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
# param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
Xavier = XavierInitializer
MSRA = MSRAInitializer
import copy
import itertools
from paddle.v2.fluid.framework import Variable, g_main_program, \
g_startup_program, unique_name, Program, dtype_is_floating
from paddle.v2.fluid.initializer import ConstantInitializer, \
UniformInitializer, XavierInitializer
from framework import Variable, g_main_program, \
g_startup_program, unique_name, dtype_is_floating
from paddle.v2.fluid.initializer import Constant, Xavier
class LayerHelper(object):
......@@ -209,7 +208,7 @@ class LayerHelper(object):
def _get_default_initializer(self, dtype):
if dtype is None or dtype_is_floating(dtype) is True:
return XavierInitializer()
return Xavier()
else:
# For integer and boolean types, initialize with all zeros
return ConstantInitializer()
return Constant()
import paddle.v2.fluid.core as core
import paddle.v2.fluid.proto.framework_pb2 as framework_pb2
from paddle.v2.fluid.framework import OpProtoHolder, Variable, Program, \
Operator
from paddle.v2.fluid.initializer import ConstantInitializer, \
NormalInitializer, XavierInitializer
from . import core
import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator
from initializer import Constant, Normal, Xavier
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
import re
import cStringIO
......@@ -58,10 +56,10 @@ def fc(input,
"""
def _get_default_param_initializer():
return XavierInitializer()
return Xavier()
def _get_default_bias_initializer():
return ConstantInitializer()
return Constant()
helper = LayerHelper('fc', **locals())
......@@ -139,7 +137,7 @@ def embedding(input,
"""
def _get_default_param_initializer():
return XavierInitializer()
return Xavier()
helper = LayerHelper('embedding', **locals())
w = helper.create_parameter(
......@@ -477,7 +475,7 @@ def linear_chain_crf(input,
main_program=None,
startup_program=None):
def _get_default_param_initializer():
return XavierInitializer()
return Xavier()
helper = LayerHelper('linear_chain_crf', **locals())
size = input.shape[1]
......@@ -661,10 +659,10 @@ def sequence_conv(input,
"""
def _get_default_bias_initializer():
return ConstantInitializer()
return Constant()
def _get_default_param_initializer():
return XavierInitializer()
return Xavier()
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes.
......@@ -725,11 +723,11 @@ def conv2d(input,
"""
def _get_default_bias_initializer():
return ConstantInitializer()
return Constant()
def _get_default_param_initializer(filter_size, num_channels):
std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
return NormalInitializer(0.0, std, 0)
return Normal(0.0, std, 0)
helper = LayerHelper('conv2d', **locals())
dtype = helper.input_dtype()
......@@ -878,22 +876,20 @@ def batch_norm(input,
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
initializer=ConstantInitializer(1.0))
initializer=Constant(1.0))
bias = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
initializer=ConstantInitializer(0.0))
initializer=Constant(0.0))
mean = helper.create_global_variable(
dtype=input.dtype, shape=param_shape, persistable=True)
helper.set_variable_initializer(
var=mean, initializer=ConstantInitializer(0.0))
helper.set_variable_initializer(var=mean, initializer=Constant(0.0))
variance = helper.create_global_variable(
dtype=input.dtype, shape=param_shape, persistable=True)
helper.set_variable_initializer(
var=variance, initializer=ConstantInitializer(1.0))
helper.set_variable_initializer(var=variance, initializer=Constant(1.0))
# create output
# mean and mean_out share the same memory
......@@ -1358,6 +1354,20 @@ def lod_rank_table(x, level=0, main_program=None):
return table
def max_sequence_len(rank_table, main_program=None):
"""
This function creates an operator to calculate the length of
max seqence through input rank_table(should be a lod_rank_table)
"""
helper = LayerHelper("max_seqence_len", **locals())
res = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="max_sequence_len",
inputs={"RankTable": rank_table},
outputs={"Out": res})
return res
def topk(input, k, main_program=None, startup_program=None):
helper = LayerHelper('topk', **locals())
topk_out = helper.create_tmp_variable(dtype=input.data_type)
......
import paddle.v2.fluid.layers as layers
import layers
__all__ = ["simple_img_conv_pool", "sequence_conv_pool"]
......
from collections import defaultdict
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.framework import unique_name, Program
from paddle.v2.fluid.backward import append_backward_ops
from paddle.v2.fluid.initializer import ConstantInitializer
from paddle.v2.fluid.regularizer import append_regularization_ops
from paddle.v2.fluid.layer_helper import LayerHelper
import framework
from backward import append_backward_ops
from framework import unique_name
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
__all__ = [
'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
'AdamaxOptimizer', 'DecayedAdagradOptimizer'
]
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
class Optimizer(object):
......@@ -48,7 +45,7 @@ class Optimizer(object):
persistable=True)
param_lr = param_lr * self._learning_rate
self.helper.set_variable_initializer(
var=param_lr_var, initializer=ConstantInitializer(param_lr))
var=param_lr_var, initializer=Constant(param_lr))
return param_lr_var
def _create_accumulators(self, block, parameters):
......@@ -96,7 +93,7 @@ class Optimizer(object):
type=param.type,
shape=param.shape)
self.helper.set_variable_initializer(
var, initializer=ConstantInitializer(value=float(fill_value)))
var, initializer=Constant(value=float(fill_value)))
self._accumulators[name][param.name] = var
def _get_accumulator(self, name, param):
......@@ -360,7 +357,7 @@ class AdamOptimizer(Optimizer):
lod_level=0,
persistable=True)
self.helper.set_variable_initializer(
self._beta1_pow_acc, initializer=ConstantInitializer(self._beta1))
self._beta1_pow_acc, initializer=Constant(self._beta1))
self._beta2_pow_acc = self.helper.create_global_variable(
name=unique_name('beta2_pow_acc'),
......@@ -370,7 +367,7 @@ class AdamOptimizer(Optimizer):
persistable=True)
self.helper.set_variable_initializer(
self._beta2_pow_acc, initializer=ConstantInitializer(self._beta2))
self._beta2_pow_acc, initializer=Constant(self._beta2))
# Create accumulator tensors for first and second moments
for p in parameters:
......@@ -462,7 +459,7 @@ class AdamaxOptimizer(Optimizer):
lod_level=0,
persistable=True)
self.helper.set_variable_initializer(
self._beta1_pow_acc, initializer=ConstantInitializer(self._beta1))
self._beta1_pow_acc, initializer=Constant(self._beta1))
# Create accumulator tensors for first moment and infinity norm
for p in parameters:
......@@ -559,3 +556,19 @@ class DecayedAdagradOptimizer(Optimizer):
attrs={"epsilon": self._epsilon})
return decayed_adagrad_op
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
import paddle.v2.fluid.framework as framework
import framework
__all__ = [
'append_regularization_ops', 'L2DecayRegularizer', 'L1DecayRegularizer'
]
__all__ = ['append_regularization_ops', 'L1Decay', 'L2Decay']
def append_regularization_ops(parameters_and_grads):
......@@ -139,3 +137,16 @@ class L1DecayRegularizer(WeightDecayRegularizer):
attrs={"scale": self._regularization_coeff})
return decay
# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
# param_attr=ParamAttr(fluid.regularizer.Xavier()))
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
list(REMOVE_ITEM TEST_OPS test_image_classification_train)
py_test(test_image_classification_train_resnet SRCS test_image_classification_train.py ARGS resnet)
py_test(test_image_classification_train_vgg SRCS test_image_classification_train.py ARGS vgg)
# default test
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.io import save_persistables, load_persistables
from paddle.v2.fluid.optimizer import SGDOptimizer
import paddle.v2.fluid as fluid
x = layers.data(name='x', shape=[13], dtype='float32')
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = layers.fc(input=x, size=1, act=None)
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = layers.data(name='y', shape=[1], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = layers.square_error_cost(input=y_predict, label=y)
avg_cost = layers.mean(x=cost)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
......@@ -26,32 +21,24 @@ train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
save_persistables(exe, "./fit_a_line.model/")
load_persistables(exe, "./fit_a_line.model/")
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("float32")
tensor_x = core.LoDTensor()
tensor_x.set(x_data, place)
# print tensor_x.get_dims()
tensor_y = core.LoDTensor()
tensor_y.set(y_data, place)
# print tensor_y.get_dims()
outs = exe.run(framework.default_main_program(),
feed={'x': tensor_x,
'y': tensor_y},
fetch_list=[avg_cost])
out = np.array(outs[0])
if out[0] < 10.0:
x_data = np.array(map(lambda _: _[0], data)).astype("float32")
y_data = np.array(map(lambda _: _[1], data)).astype("float32")
avg_loss_value, = exe.run(fluid.default_main_program(),
feed={'x': x_data,
'y': y_data},
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
import paddle.v2.fluid.evaluator as evaluator
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.initializer import XavierInitializer
from paddle.v2.fluid.optimizer import AdamOptimizer
import paddle.v2.fluid as fluid
import sys
def resnet_cifar10(input, depth=32):
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
tmp = layers.conv2d(
tmp = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
......@@ -20,12 +16,11 @@ def resnet_cifar10(input, depth=32):
padding=padding,
act=None,
bias_attr=False)
return layers.batch_norm(input=tmp, act=act)
return fluid.layers.batch_norm(input=tmp, act=act)
def shortcut(input, ch_in, ch_out, stride, program, init_program):
def shortcut(input, ch_in, ch_out, stride):
if ch_in != ch_out:
return conv_bn_layer(input, ch_out, 1, stride, 0, None, program,
init_program)
return conv_bn_layer(input, ch_out, 1, stride, 0, None)
else:
return input
......@@ -33,7 +28,7 @@ def resnet_cifar10(input, depth=32):
tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None)
short = shortcut(input, ch_in, ch_out, stride)
return layers.elementwise_add(x=tmp, y=short, act='relu')
return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
def layer_warp(block_func, input, ch_in, ch_out, count, stride):
tmp = block_func(input, ch_in, ch_out, stride)
......@@ -48,14 +43,14 @@ def resnet_cifar10(input, depth=32):
res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
pool = layers.pool2d(
pool = fluid.layers.pool2d(
input=res3, pool_size=8, pool_type='avg', pool_stride=1)
return pool
def vgg16_bn_drop(input):
def conv_block(input, num_filter, groups, dropouts):
return nets.img_conv_group(
return fluid.nets.img_conv_group(
input=input,
pool_size=2,
pool_stride=2,
......@@ -72,44 +67,42 @@ def vgg16_bn_drop(input):
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = layers.fc(input=drop,
size=512,
act=None,
param_attr={"initializer": XavierInitializer()})
reshape1 = layers.reshape(x=fc1, shape=list(fc1.shape + (1, 1)))
bn = layers.batch_norm(input=reshape1, act='relu')
drop2 = layers.dropout(x=bn, dropout_prob=0.5)
fc2 = layers.fc(input=drop2,
size=512,
act=None,
param_attr={"initializer": XavierInitializer()})
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
reshape1 = fluid.layers.reshape(x=fc1, shape=list(fc1.shape + (1, 1)))
bn = fluid.layers.batch_norm(input=reshape1, act='relu')
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
return fc2
classdim = 10
data_shape = [3, 32, 32]
images = layers.data(name='pixel', shape=data_shape, dtype='float32')
label = layers.data(name='label', shape=[1], dtype='int64')
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Add neural network config
# option 1. resnet
# net = resnet_cifar10(images, 32)
# option 2. vgg
net = vgg16_bn_drop(images)
net_type = "vgg"
if len(sys.argv) >= 2:
net_type = sys.argv[1]
# print(program)
if net_type == "vgg":
print("train vgg net")
net = vgg16_bn_drop(images)
elif net_type == "resnet":
print("train resnet")
net = resnet_cifar10(images, 32)
else:
raise ValueError("%s network is not supported" % net_type)
predict = layers.fc(input=net, size=classdim, act='softmax')
cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(x=cost)
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# optimizer = SGDOptimizer(learning_rate=0.001)
optimizer = AdamOptimizer(learning_rate=0.001)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
accuracy = evaluator.Accuracy(input=predict, label=label)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 128
PASS_NUM = 1
......@@ -119,13 +112,12 @@ train_reader = paddle.batch(
paddle.dataset.cifar.train10(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
batch_id = 0
accuracy.reset(exe)
for data in train_reader():
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
......@@ -136,25 +128,13 @@ for pass_id in range(PASS_NUM):
batch_size = batch_size * i
y_data = y_data.reshape([batch_size, 1])
tensor_img = core.LoDTensor()
tensor_y = core.LoDTensor()
tensor_img.set(img_data, place)
tensor_y.set(y_data, place)
outs = exe.run(framework.default_main_program(),
feed={"pixel": tensor_img,
"label": tensor_y},
fetch_list=[avg_cost] + accuracy.metrics)
loss = np.array(outs[0])
acc = np.array(outs[1])
loss, acc = exe.run(fluid.default_main_program(),
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
print("pass_id:" + str(pass_id) + " batch_id:" + str(batch_id) +
" loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
pass_acc))
batch_id = batch_id + 1
if batch_id > 1:
# this model is slow, so if we can train two mini batch, we think it works properly.
exit(0)
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
pass_acc))
# this model is slow, so if we can train two mini batch, we think it works properly.
exit(0)
exit(1)
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor, g_scope
from paddle.v2.fluid.optimizer import SGDOptimizer
import paddle.v2.fluid as fluid
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
......@@ -34,23 +30,23 @@ def load_parameter(file_name, h, w):
def db_lstm():
# 8 features
word = layers.data(name='word_data', shape=[1], dtype='int64')
predicate = layers.data(name='verb_data', shape=[1], dtype='int64')
ctx_n2 = layers.data(name='ctx_n2_data', shape=[1], dtype='int64')
ctx_n1 = layers.data(name='ctx_n1_data', shape=[1], dtype='int64')
ctx_0 = layers.data(name='ctx_0_data', shape=[1], dtype='int64')
ctx_p1 = layers.data(name='ctx_p1_data', shape=[1], dtype='int64')
ctx_p2 = layers.data(name='ctx_p2_data', shape=[1], dtype='int64')
mark = layers.data(name='mark_data', shape=[1], dtype='int64')
predicate_embedding = layers.embedding(
word = fluid.layers.data(name='word_data', shape=[1], dtype='int64')
predicate = fluid.layers.data(name='verb_data', shape=[1], dtype='int64')
ctx_n2 = fluid.layers.data(name='ctx_n2_data', shape=[1], dtype='int64')
ctx_n1 = fluid.layers.data(name='ctx_n1_data', shape=[1], dtype='int64')
ctx_0 = fluid.layers.data(name='ctx_0_data', shape=[1], dtype='int64')
ctx_p1 = fluid.layers.data(name='ctx_p1_data', shape=[1], dtype='int64')
ctx_p2 = fluid.layers.data(name='ctx_p2_data', shape=[1], dtype='int64')
mark = fluid.layers.data(name='mark_data', shape=[1], dtype='int64')
predicate_embedding = fluid.layers.embedding(
input=predicate,
size=[pred_len, word_dim],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr={'name': 'vemb'})
mark_embedding = layers.embedding(
mark_embedding = fluid.layers.embedding(
input=mark,
size=[mark_dict_len, mark_dim],
dtype='float32',
......@@ -58,7 +54,7 @@ def db_lstm():
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
layers.embedding(
fluid.layers.embedding(
size=[word_dict_len, word_dim],
input=x,
param_attr={'name': embedding_name,
......@@ -68,12 +64,12 @@ def db_lstm():
emb_layers.append(mark_embedding)
hidden_0_layers = [
layers.fc(input=emb, size=hidden_dim) for emb in emb_layers
fluid.layers.fc(input=emb, size=hidden_dim) for emb in emb_layers
]
hidden_0 = layers.sums(input=hidden_0_layers)
hidden_0 = fluid.layers.sums(input=hidden_0_layers)
lstm_0 = layers.dynamic_lstm(
lstm_0 = fluid.layers.dynamic_lstm(
input=hidden_0,
size=hidden_dim,
candidate_activation='relu',
......@@ -84,12 +80,12 @@ def db_lstm():
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
mix_hidden = layers.sums(input=[
layers.fc(input=input_tmp[0], size=hidden_dim),
layers.fc(input=input_tmp[1], size=hidden_dim)
mix_hidden = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=hidden_dim),
fluid.layers.fc(input=input_tmp[1], size=hidden_dim)
])
lstm = layers.dynamic_lstm(
lstm = fluid.layers.dynamic_lstm(
input=mix_hidden,
size=hidden_dim,
candidate_activation='relu',
......@@ -99,9 +95,9 @@ def db_lstm():
input_tmp = [mix_hidden, lstm]
feature_out = layers.sums(input=[
layers.fc(input=input_tmp[0], size=label_dict_len),
layers.fc(input=input_tmp[1], size=label_dict_len)
feature_out = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=label_dict_len),
fluid.layers.fc(input=input_tmp[1], size=label_dict_len)
])
return feature_out
......@@ -116,7 +112,7 @@ def to_lodtensor(data, place):
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = core.LoDTensor()
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
......@@ -125,29 +121,29 @@ def to_lodtensor(data, place):
def main():
# define network topology
feature_out = db_lstm()
target = layers.data(name='target', shape=[1], dtype='int64')
crf_cost = layers.linear_chain_crf(
target = fluid.layers.data(name='target', shape=[1], dtype='int64')
crf_cost = fluid.layers.linear_chain_crf(
input=feature_out,
label=target,
param_attr={"name": 'crfw',
"learning_rate": mix_hidden_lr})
avg_cost = layers.mean(x=crf_cost)
avg_cost = fluid.layers.mean(x=crf_cost)
# TODO(qiao)
# 1. add crf_decode_layer and evaluator
# 2. use other optimizer and check why out will be NAN
sgd_optimizer = SGDOptimizer(learning_rate=0.0001)
opts = sgd_optimizer.minimize(avg_cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.0001)
sgd_optimizer.minimize(avg_cost)
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.conll05.test(), buf_size=8192),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
embedding_param = g_scope.find_var(embedding_name).get_tensor()
embedding_param = fluid.g_scope.find_var(embedding_name).get_tensor()
embedding_param.set(
load_parameter(conll05.get_embedding(), word_dict_len, word_dim), place)
......@@ -164,7 +160,7 @@ def main():
mark_data = to_lodtensor(map(lambda x: x[7], data), place)
target = to_lodtensor(map(lambda x: x[8], data), place)
outs = exe.run(framework.default_main_program(),
outs = exe.run(fluid.default_main_program(),
feed={
'word_data': word_data,
'ctx_n2_data': ctx_n2_data,
......
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.evaluator as evaluator
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import AdamOptimizer
import paddle.v2.fluid as fluid
images = layers.data(name='pixel', shape=[1, 28, 28], dtype='float32')
label = layers.data(name='label', shape=[1], dtype='int64')
conv_pool_1 = nets.simple_img_conv_pool(
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=images,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_2 = nets.simple_img_conv_pool(
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
......@@ -25,13 +20,13 @@ conv_pool_2 = nets.simple_img_conv_pool(
pool_stride=2,
act="relu")
predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(x=cost)
optimizer = AdamOptimizer(learning_rate=0.01, beta1=0.9, beta2=0.999)
opts = optimizer.minimize(avg_cost)
predict = fluid.layers.fc(input=conv_pool_2, size=10, act="softmax")
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.01)
optimizer.minimize(avg_cost)
accuracy = evaluator.Accuracy(input=predict, label=label)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 50
PASS_NUM = 3
......@@ -40,10 +35,10 @@ train_reader = paddle.batch(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
......@@ -53,17 +48,10 @@ for pass_id in range(PASS_NUM):
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([BATCH_SIZE, 1])
tensor_img = core.LoDTensor()
tensor_y = core.LoDTensor()
tensor_img.set(img_data, place)
tensor_y.set(y_data, place)
outs = exe.run(framework.default_main_program(),
feed={"pixel": tensor_img,
"label": tensor_y},
fetch_list=[avg_cost] + accuracy.metrics)
loss = np.array(outs[0])
acc = np.array(outs[1])
loss, acc = exe.run(fluid.default_main_program(),
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " acc=" + str(acc) + " pass_acc=" +
str(pass_acc))
......
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.evaluator as evaluator
from paddle.v2.fluid.io import get_inference_program
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.initializer import UniformInitializer
from paddle.v2.fluid.optimizer import MomentumOptimizer
from paddle.v2.fluid.regularizer import L2DecayRegularizer
import paddle.v2.fluid as fluid
BATCH_SIZE = 128
image = layers.data(name='x', shape=[784], dtype='float32')
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
param_attr = {
'name': None,
'initializer': UniformInitializer(
low=-1.0, high=1.0),
'regularization': L2DecayRegularizer(0.0005 * BATCH_SIZE)
'regularization': fluid.regularizer.L2Decay(0.0005 * BATCH_SIZE)
}
hidden1 = layers.fc(input=image, size=128, act='relu', param_attr=param_attr)
hidden2 = layers.fc(input=hidden1, size=64, act='relu', param_attr=param_attr)
hidden1 = fluid.layers.fc(input=image,
size=128,
act='relu',
param_attr=param_attr)
hidden2 = fluid.layers.fc(input=hidden1,
size=64,
act='relu',
param_attr=param_attr)
predict = layers.fc(input=hidden2,
size=10,
act='softmax',
param_attr=param_attr)
predict = fluid.layers.fc(input=hidden2,
size=10,
act='softmax',
param_attr=param_attr)
label = layers.data(name='y', shape=[1], dtype='int64')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(x=cost)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
opts = optimizer.minimize(avg_cost)
accuracy = evaluator.Accuracy(input=predict, label=label)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
inference_program = fluid.default_main_program().clone()
test_accuracy = fluid.evaluator.Accuracy(
input=predict, label=label, main_program=inference_program)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(
test_target, main_program=inference_program)
train_reader = paddle.batch(
paddle.reader.shuffle(
......@@ -45,10 +49,10 @@ train_reader = paddle.batch(
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
......@@ -58,13 +62,13 @@ for pass_id in range(PASS_NUM):
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = np.expand_dims(y_data, axis=1)
tensor_x = core.LoDTensor()
tensor_x = fluid.LoDTensor()
tensor_x.set(x_data, place)
tensor_y = core.LoDTensor()
tensor_y = fluid.LoDTensor()
tensor_y.set(y_data, place)
outs = exe.run(framework.default_main_program(),
outs = exe.run(fluid.default_main_program(),
feed={'x': tensor_x,
'y': tensor_y},
fetch_list=[avg_cost] + accuracy.metrics)
......@@ -72,29 +76,16 @@ for pass_id in range(PASS_NUM):
acc = np.array(outs[1])
pass_acc = accuracy.eval(exe)
test_accuracy = evaluator.Accuracy(input=predict, label=label)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = get_inference_program(test_target)
test_accuracy.reset(exe)
for data in test_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = np.expand_dims(y_data, axis=1)
tensor_x = core.LoDTensor()
tensor_x.set(x_data, place)
tensor_y = core.LoDTensor()
tensor_y.set(y_data, place)
outs = exe.run(inference_program,
feed={'x': tensor_x,
'y': tensor_y},
fetch_list=[avg_cost] + test_accuracy.metrics)
out = np.array(outs[0])
acc = np.array(outs[1])
out, acc = exe.run(inference_program,
feed={'x': x_data,
'y': y_data},
fetch_list=[avg_cost] + test_accuracy.metrics)
test_pass_acc = test_accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " train_cost=" + str(
......
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.evaluator as evaluator
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import AdamOptimizer
import paddle.v2.fluid as fluid
def convolution_net(input_dim, class_dim=2, emb_dim=32, hid_dim=32):
data = layers.data(name="words", shape=[1], dtype="int64")
label = layers.data(name="label", shape=[1], dtype="int64")
data = fluid.layers.data(name="words", shape=[1], dtype="int64")
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
emb = layers.embedding(input=data, size=[input_dim, emb_dim])
conv_3 = nets.sequence_conv_pool(
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=3,
act="tanh",
pool_type="sqrt")
conv_4 = nets.sequence_conv_pool(
conv_4 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=4,
act="tanh",
pool_type="sqrt")
prediction = layers.fc(input=[conv_3, conv_4],
size=class_dim,
act="softmax")
cost = layers.cross_entropy(input=prediction, label=label)
avg_cost = layers.mean(x=cost)
adam_optimizer = AdamOptimizer(learning_rate=0.002)
prediction = fluid.layers.fc(input=[conv_3, conv_4],
size=class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
adam_optimizer.minimize(avg_cost)
accuracy = evaluator.Accuracy(input=prediction, label=label)
accuracy = fluid.evaluator.Accuracy(input=prediction, label=label)
return avg_cost, accuracy, accuracy.metrics[0]
......@@ -46,7 +41,7 @@ def to_lodtensor(data, place):
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = core.LoDTensor()
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
......@@ -67,10 +62,10 @@ def main():
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
for pass_id in xrange(PASS_NUM):
accuracy.reset(exe)
......@@ -80,15 +75,14 @@ def main():
label = np.array(map(lambda x: x[1], data)).astype("int64")
label = label.reshape([BATCH_SIZE, 1])
tensor_label = core.LoDTensor()
tensor_label = fluid.LoDTensor()
tensor_label.set(label, place)
outs = exe.run(framework.default_main_program(),
feed={"words": tensor_words,
"label": tensor_label},
fetch_list=[cost, acc_out])
cost_val = np.array(outs[0])
acc_val = np.array(outs[1])
cost_val, acc_val = exe.run(
fluid.default_main_program(),
feed={"words": tensor_words,
"label": tensor_label},
fetch_list=[cost, acc_out])
pass_acc = accuracy.eval(exe)
print("cost=" + str(cost_val) + " acc=" + str(acc_val) +
" pass_acc=" + str(pass_acc))
......
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.evaluator as evaluator
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import AdamOptimizer
import paddle.v2.fluid as fluid
def stacked_lstm_net(input_dim,
......@@ -14,35 +9,35 @@ def stacked_lstm_net(input_dim,
hid_dim=512,
stacked_num=3):
assert stacked_num % 2 == 1
data = layers.data(name="words", shape=[1], dtype="int64")
label = layers.data(name="label", shape=[1], dtype="int64")
data = fluid.layers.data(name="words", shape=[1], dtype="int64")
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
emb = layers.embedding(input=data, size=[input_dim, emb_dim])
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
# add bias attr
# TODO(qijun) linear act
fc1 = layers.fc(input=emb, size=hid_dim)
lstm1, cell1 = layers.dynamic_lstm(input=fc1, size=hid_dim)
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
fc = layers.fc(input=inputs, size=hid_dim)
lstm, cell = layers.dynamic_lstm(
fc = fluid.layers.fc(input=inputs, size=hid_dim)
lstm, cell = fluid.layers.dynamic_lstm(
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
inputs = [fc, lstm]
fc_last = layers.sequence_pool(input=inputs[0], pool_type='max')
lstm_last = layers.sequence_pool(input=inputs[1], pool_type='max')
fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
prediction = layers.fc(input=[fc_last, lstm_last],
size=class_dim,
act='softmax')
cost = layers.cross_entropy(input=prediction, label=label)
avg_cost = layers.mean(x=cost)
adam_optimizer = AdamOptimizer(learning_rate=0.002)
prediction = fluid.layers.fc(input=[fc_last, lstm_last],
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
adam_optimizer.minimize(avg_cost)
accuracy = evaluator.Accuracy(input=prediction, label=label)
accuracy = fluid.evaluator.Accuracy(input=prediction, label=label)
return avg_cost, accuracy, accuracy.metrics[0]
......@@ -55,7 +50,7 @@ def to_lodtensor(data, place):
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = core.LoDTensor()
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
......@@ -77,10 +72,10 @@ def main():
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
for pass_id in xrange(PASS_NUM):
accuracy.reset(exe)
......@@ -90,15 +85,14 @@ def main():
label = np.array(map(lambda x: x[1], data)).astype("int64")
label = label.reshape([BATCH_SIZE, 1])
tensor_label = core.LoDTensor()
tensor_label = fluid.LoDTensor()
tensor_label.set(label, place)
outs = exe.run(framework.default_main_program(),
feed={"words": tensor_words,
"label": tensor_label},
fetch_list=[cost, acc_out])
cost_val = np.array(outs[0])
acc_val = np.array(outs[1])
cost_val, acc_val = exe.run(
fluid.default_main_program(),
feed={"words": tensor_words,
"label": tensor_label},
fetch_list=[cost, acc_out])
pass_acc = accuracy.eval(exe)
print("cost=" + str(cost_val) + " acc=" + str(acc_val) +
" pass_acc=" + str(pass_acc))
......
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import AdamOptimizer
import paddle.v2.fluid as fluid
def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
data = layers.data(
data = fluid.layers.data(
name="words",
shape=[seq_len * batch_size, 1],
append_batch_size=False,
dtype="int64")
label = layers.data(
label = fluid.layers.data(
name="label",
shape=[batch_size, 1],
append_batch_size=False,
dtype="int64")
emb = layers.embedding(input=data, size=[dict_dim, emb_dim])
emb = layers.reshape(x=emb, shape=[batch_size, seq_len, emb_dim])
emb = layers.transpose(x=emb, axis=[1, 0, 2])
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
emb = fluid.layers.reshape(x=emb, shape=[batch_size, seq_len, emb_dim])
emb = fluid.layers.transpose(x=emb, axis=[1, 0, 2])
c_pre_init = layers.fill_constant(
c_pre_init = fluid.layers.fill_constant(
dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0)
layer_1_out = layers.lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
layer_1_out = layers.transpose(x=layer_1_out, axis=[1, 0, 2])
layer_1_out = fluid.layers.lstm(
emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
layer_1_out = fluid.layers.transpose(x=layer_1_out, axis=[1, 0, 2])
prediction = layers.fc(input=layer_1_out, size=class_dim, act="softmax")
cost = layers.cross_entropy(input=prediction, label=label)
prediction = fluid.layers.fc(input=layer_1_out,
size=class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = layers.mean(x=cost)
adam_optimizer = AdamOptimizer(learning_rate=0.002)
opts = adam_optimizer.minimize(avg_cost)
acc = layers.accuracy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
adam_optimizer.minimize(avg_cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, acc
......@@ -48,7 +47,7 @@ def to_lodtensor(data, place):
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = core.LoDTensor()
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
......@@ -65,7 +64,7 @@ def prepare_feed_data(data, place):
label = np.array(map(lambda x: x[1], data)).astype("int64")
label = label.reshape([len(label), 1])
tensor_label = core.LoDTensor()
tensor_label = fluid.LoDTensor()
tensor_label.set(label, place)
return tensor_words, tensor_label
......@@ -86,17 +85,17 @@ def main():
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=BATCH_SIZE * 10),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
for pass_id in xrange(PASS_NUM):
for data in train_data():
chopped_data = chop_data(data)
tensor_words, tensor_label = prepare_feed_data(chopped_data, place)
outs = exe.run(framework.default_main_program(),
outs = exe.run(fluid.default_main_program(),
feed={"words": tensor_words,
"label": tensor_label},
fetch_list=[cost, acc])
......
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import SGDOptimizer
import paddle.v2.fluid as fluid
PASS_NUM = 100
EMBED_SIZE = 32
......@@ -16,57 +12,57 @@ IS_SPARSE = True
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
first_word = layers.data(name='firstw', shape=[1], dtype='int64')
second_word = layers.data(name='secondw', shape=[1], dtype='int64')
third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
next_word = layers.data(name='nextw', shape=[1], dtype='int64')
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
embed_first = layers.embedding(
embed_first = fluid.layers.embedding(
input=first_word,
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr={'name': 'shared_w'})
embed_second = layers.embedding(
embed_second = fluid.layers.embedding(
input=second_word,
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr={'name': 'shared_w'})
embed_third = layers.embedding(
embed_third = fluid.layers.embedding(
input=third_word,
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr={'name': 'shared_w'})
embed_forth = layers.embedding(
embed_forth = fluid.layers.embedding(
input=forth_word,
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr={'name': 'shared_w'})
concat_embed = layers.concat(
concat_embed = fluid.layers.concat(
input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
hidden1 = layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid')
predict_word = layers.fc(input=hidden1, size=dict_size, act='softmax')
cost = layers.cross_entropy(input=predict_word, label=next_word)
avg_cost = layers.mean(x=cost)
sgd_optimizer = SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)
hidden1 = fluid.layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid')
predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
# fix https://github.com/PaddlePaddle/Paddle/issues/5434 then remove
# below exit line.
exit(0)
exe.run(framework.default_startup_program())
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
for data in train_reader():
......@@ -74,36 +70,15 @@ for pass_id in range(PASS_NUM):
input_data = map(lambda x: np.array(x).astype("int64"), input_data)
input_data = map(lambda x: np.expand_dims(x, axis=1), input_data)
first_data = input_data[0]
first_tensor = core.LoDTensor()
first_tensor.set(first_data, place)
second_data = input_data[1]
second_tensor = core.LoDTensor()
second_tensor.set(second_data, place)
third_data = input_data[2]
third_tensor = core.LoDTensor()
third_tensor.set(third_data, place)
forth_data = input_data[3]
forth_tensor = core.LoDTensor()
forth_tensor.set(forth_data, place)
next_data = input_data[4]
next_tensor = core.LoDTensor()
next_tensor.set(next_data, place)
outs = exe.run(framework.default_main_program(),
feed={
'firstw': first_tensor,
'secondw': second_tensor,
'thirdw': third_tensor,
'forthw': forth_tensor,
'nextw': next_tensor
},
fetch_list=[avg_cost])
out = np.array(outs[0])
if out[0] < 10.0:
avg_cost_np = exe.run(fluid.default_main_program(),
feed={
'firstw': input_data[0],
'secondw': input_data[1],
'thirdw': input_data[2],
'forthw': input_data[3],
'nextw': input_data[4]
},
fetch_list=[avg_cost])
if avg_cost_np[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
......@@ -18,7 +18,11 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor.set_lod([[0, 3, 9, 10]])
expect = map(lambda x: numpy.array(x).astype('int32'),
[[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]])
self.main(tensor=tensor, expect_array=expect, expect_lod=[] * 6)
self.main(
tensor=tensor,
expect_array=expect,
expect_lod=[] * 6,
expect_max_len=6)
def test_lod_tensor_to_array_level_0_empty_seq(self):
tensor = core.LoDTensor()
......@@ -27,7 +31,11 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
tensor.set_lod([[0, 3, 9, 9, 10]])
expect = map(lambda x: numpy.array(x).astype('int32'),
[[3, 0, 9], [4, 1], [5, 2], [6], [7], [8]])
self.main(tensor=tensor, expect_array=expect, expect_lod=[] * 6)
self.main(
tensor=tensor,
expect_array=expect,
expect_lod=[] * 6,
expect_max_len=6)
def test_lod_tensor_to_array_level_1(self):
tensor = core.LoDTensor()
......@@ -44,7 +52,11 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
]
lod = [[[0, 2, 5]], [[0, 6, 12]], [[0, 3]]]
self.main(tensor=tensor, expect_array=expect, expect_lod=lod)
self.main(
tensor=tensor,
expect_array=expect,
expect_lod=lod,
expect_max_len=3)
def test_lod_tensor_to_array_level_1_empty_seq(self):
tensor = core.LoDTensor()
......@@ -63,7 +75,11 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
]
lod = [[[0, 5, 8, 8, 15]], [[0, 2, 6, 7, 8]], [[0, 2, 6]], [[0, 2]]]
self.main(tensor=tensor, expect_array=expect, expect_lod=lod)
self.main(
tensor=tensor,
expect_array=expect,
expect_lod=lod,
expect_max_len=4)
def test_lod_tensor_to_array_level_2(self):
tensor = core.LoDTensor()
......@@ -80,7 +96,11 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
]
lod = [[[0, 1, 3, 4], [0, 1, 4, 8, 12]],
[[0, 4, 7], [0, 1, 5, 9, 17, 21, 27, 31]], [[0, 2], [0, 6, 7]]]
self.main(tensor=tensor, expect_array=expect, expect_lod=lod)
self.main(
tensor=tensor,
expect_array=expect,
expect_lod=lod,
expect_max_len=3)
def test_lod_tensor_to_array_level_2_skip_level(self):
tensor = core.LoDTensor()
......@@ -88,14 +108,21 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
numpy.arange(50).reshape(50, 1).astype('int32'), self.place())
tensor.set_lod([[0, 2, 5, 6], [0, 2, 5, 6, 10, 12, 13],
[0, 3, 7, 11, 17, 21, 22, 23, 27, 31, 39, 45, 46, 50]])
self.main(tensor=tensor, expect_array=None, expect_lod=None, level=1)
def main(self, tensor, expect_array, expect_lod, level=0):
self.main(
tensor=tensor,
expect_array=None,
expect_lod=None,
expect_max_len=4,
level=1)
def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0):
place = self.place()
program = Program()
x = layers.data(name='x', shape=[10], main_program=program)
x.persistable = True
table = layers.lod_rank_table(x, level=level, main_program=program)
max_len = layers.max_sequence_len(table, main_program=program)
max_len.persistable = True
array = layers.lod_tensor_to_array(x, table, main_program=program)
array.persistable = True
......@@ -110,6 +137,10 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
self.check_array_same(array, expect_array, expect_lod)
self.check_tensor_same(scope.find_var(result.name).get_tensor(), tensor)
self.assertEqual(
numpy.array(scope.find_var(max_len.name).get_tensor())[0],
expect_max_len)
def check_array_same(self, array, expect_tensor, expect_lod):
self.assertEqual(len(expect_tensor), len(array))
for i, exp in enumerate(zip(expect_tensor, expect_lod)):
......
......@@ -30,9 +30,7 @@ class TestMaxOutOp(OpTest):
def init_test_case(self):
self.MaxOut_forward_naive = maxout_forward_naive
self.shape = [100, 6, 2, 2]
self.groups=2
self.groups = 2
if __name__ == '__main__':
......
from __future__ import print_function
import unittest
from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.framework import g_main_program
import paddle.v2.fluid.layers as layers
class TestProgram(unittest.TestCase):
......@@ -48,8 +50,8 @@ class TestProgram(unittest.TestCase):
# FIXME(yuyang18): We manual compare the output string, since the order
# of variable could be changed.
print prog
print prog.clone()
print(prog)
print(prog.clone())
def test_parse_program_from_string(self):
prog = Program()
......@@ -67,8 +69,8 @@ class TestProgram(unittest.TestCase):
binary_str = prog.desc.serialize_to_string()
prog_restored = Program.parse_from_string(binary_str)
print prog
print prog_restored
print(prog)
print(prog_restored)
def test_append_backward(self):
prog = Program()
......@@ -123,6 +125,20 @@ class TestProgram(unittest.TestCase):
actual_ops.append(op.type)
self.assertEqual(actual_ops, expect_ops)
def test_program_clone_with_parameter(self):
main_program = Program()
startup_program = Program()
kwargs = {
'main_program': main_program,
'startup_program': startup_program
}
d = layers.data(name='x', shape=[784], dtype='float32', **kwargs)
hidden = layers.fc(input=d, size=100, **kwargs)
layers.fc(input=hidden, size=100, **kwargs)
new_program = main_program.clone()
self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))
if __name__ == '__main__':
unittest.main()
......@@ -4,24 +4,22 @@ import math
import sys
from op_test import OpTest
class TestROIPoolOp(OpTest):
def set_data(self):
self.init_test_case()
self.make_rois()
self.calc_roi_pool()
self.inputs = {
'X': self.x,
'ROIs': self.rois}
self.inputs = {'X': self.x, 'ROIs': self.rois}
self.attrs = {
'spatial_scale': self.spatial_scale,
'pooled_height': self.pooled_height,
'pooled_width': self.pooled_width}
'pooled_width': self.pooled_width
}
self.outputs = {
'Out': self.outs,
'Argmax': self.argmaxes}
self.outputs = {'Out': self.outs, 'Argmax': self.argmaxes}
def init_test_case(self):
self.batch_size = 5
......@@ -30,10 +28,9 @@ class TestROIPoolOp(OpTest):
self.width = 4
# n, c, h, w
self.x_dim = (self.batch_size, self.channels,
self.height, self.width)
self.x_dim = (self.batch_size, self.channels, self.height, self.width)
self.spatial_scale = 1.0/4.0
self.spatial_scale = 1.0 / 4.0
self.pooled_height = 2
self.pooled_width = 2
self.rois_num = 2
......@@ -41,13 +38,11 @@ class TestROIPoolOp(OpTest):
self.x = np.random.random(self.x_dim).astype('float32')
def calc_roi_pool(self):
out_data = np.zeros(
(self.rois_num, self.channels,
self.pooled_height, self.pooled_width))
argmax_data = np.zeros(
(self.rois_num, self.channels,
self.pooled_height, self.pooled_width))
out_data = np.zeros((self.rois_num, self.channels, self.pooled_height,
self.pooled_width))
argmax_data = np.zeros((self.rois_num, self.channels,
self.pooled_height, self.pooled_width))
for i in range(self.rois_num):
roi = self.rois[i]
roi_batch_id = roi[0]
......@@ -56,8 +51,8 @@ class TestROIPoolOp(OpTest):
roi_end_w = int(round(roi[3] * self.spatial_scale))
roi_end_h = int(round(roi[4] * self.spatial_scale))
roi_height = int(max(roi_end_h - roi_start_h + 1, 1));
roi_width = int(max(roi_end_w - roi_start_w + 1, 1));
roi_height = int(max(roi_end_h - roi_start_h + 1, 1))
roi_width = int(max(roi_end_w - roi_start_w + 1, 1))
x_i = self.x[roi_batch_id]
......@@ -84,7 +79,7 @@ class TestROIPoolOp(OpTest):
out_data[i, c, ph, pw] = -sys.float_info.max
argmax_data[i, c, ph, pw] = -1
for h in range(hstart, hend):
for w in range(wstart, wend):
if x_i[c, h, w] > out_data[i, c, ph, pw]:
......@@ -104,11 +99,11 @@ class TestROIPoolOp(OpTest):
y1 = np.random.random_integers(
0, self.height / self.spatial_scale - self.pooled_height)
x2 = np.random.random_integers(
x1 + self.pooled_width, self.width / self.spatial_scale)
y2 = np.random.random_integers(
y1 + self.pooled_height, self.height / self.spatial_scale)
x2 = np.random.random_integers(x1 + self.pooled_width,
self.width / self.spatial_scale)
y2 = np.random.random_integers(y1 + self.pooled_height,
self.height / self.spatial_scale)
roi = [batch_ids[i], x1, y1, x2, y2]
rois.append(roi)
self.rois = np.array(rois).astype("int64")
......@@ -123,5 +118,6 @@ class TestROIPoolOp(OpTest):
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册