提交 1866d2db 编写于 作者: Q Qiao Longfei

parameter send support selected_rows

上级 ca5d96bb
...@@ -47,6 +47,15 @@ static size_t GetSectionIndex(int64_t id, ...@@ -47,6 +47,15 @@ static size_t GetSectionIndex(int64_t id,
return abs_sections.size() - 1; return abs_sections.size() - 1;
} }
static int FindOutIdx(int row, const std::vector<int64_t>& abs_sections) {
for (size_t i = 1; i < abs_sections.size(); ++i) {
if (row < abs_sections[i]) {
return i - 1;
}
}
return abs_sections.size() - 1;
}
static std::vector<int64_t> ToAbsoluteSection( static std::vector<int64_t> ToAbsoluteSection(
const std::vector<int>& height_sections) { const std::vector<int>& height_sections) {
std::vector<int64_t> abs_sections; std::vector<int64_t> abs_sections;
...@@ -97,21 +106,22 @@ static void SplitIdsIntoMultipleVarsBySection( ...@@ -97,21 +106,22 @@ static void SplitIdsIntoMultipleVarsBySection(
} }
} }
template <typename T>
void send(const std::string& var_name, void send(const std::string& var_name,
const std::vector<std::string>& send_varnames, const std::vector<std::string>& send_varnames,
const std::vector<std::string>& epmap, const std::vector<std::string>& epmap,
const std::vector<int>& height_sections, const std::vector<int>& height_sections,
const framework::ExecutionContext& context, const framework::ExecutionContext& ctx, const framework::Scope& scope,
const framework::Scope& scope, bool sync) { bool sync) {
framework::Scope* local_scope = scope.NewTmpScope(); framework::Scope* local_scope = scope.NewTmpScope();
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& cpu_ctx = *pool.Get(platform::CPUPlace()); auto& cpu_ctx = *pool.Get(platform::CPUPlace());
auto& actual_ctx = *pool.Get(context.GetPlace()); auto& actual_ctx = *pool.Get(ctx.GetPlace());
distributed::RPCClient* rpc_client = distributed::RPCClient* rpc_client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>( distributed::RPCClient::GetInstance<RPCCLIENT_T>(
context.Attr<int>("trainer_id")); ctx.Attr<int>("trainer_id"));
auto* send_var = scope.FindVar(var_name); auto* send_var = scope.FindVar(var_name);
size_t out_num = send_varnames.size(); size_t out_num = send_varnames.size();
...@@ -122,7 +132,7 @@ void send(const std::string& var_name, ...@@ -122,7 +132,7 @@ void send(const std::string& var_name,
outs_dims.reserve(out_num); outs_dims.reserve(out_num);
// infer output shape // infer output shape
int num = context.Attr<int>("num"); int num = ctx.Attr<int>("num");
if (num > 0) { if (num > 0) {
int64_t in_axis_dim = send_tensor_dims[0]; int64_t in_axis_dim = send_tensor_dims[0];
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0, PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
...@@ -153,13 +163,71 @@ void send(const std::string& var_name, ...@@ -153,13 +163,71 @@ void send(const std::string& var_name,
*out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]); *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
row_offset += outs_dims[i][0]; row_offset += outs_dims[i][0];
} }
} else if (send_var->IsType<framework::LoDTensor>()) { } else if (send_var->IsType<framework::SelectedRows>()) {
auto& send_slr = send_var->Get<framework::SelectedRows>();
auto abs_sections = ToAbsoluteSection(height_sections);
auto send_rows = send_slr.rows();
std::vector<std::vector<int>> outs_rows_idx;
std::vector<std::vector<int>> outs_dense_idx;
outs_rows_idx.resize(out_num);
outs_dense_idx.resize(out_num);
auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
auto src = send_slr.value().data<T>();
// create output var in local scope // create output var in local scope
std::vector<framework::SelectedRows*> outs;
for (auto& name : send_varnames) { for (auto& name : send_varnames) {
local_scope->Var(name)->GetMutable<framework::SelectedRows>(); auto* out = local_scope->Var(name)->GetMutable<framework::SelectedRows>();
outs.push_back(out);
}
// split rows index into output sparse vars
for (size_t i = 0; i < send_rows.size(); ++i) {
int out_idx = FindOutIdx(send_rows[i], abs_sections);
outs_rows_idx[out_idx].push_back(send_rows[i]);
outs_dense_idx[out_idx].push_back(i);
} }
auto place = ctx.GetPlace();
for (size_t i = 0; i < outs_rows_idx.size(); ++i) {
auto rows_idx = outs_rows_idx[i];
outs[i]->set_height(height_sections[i]);
auto dims = send_slr.GetCompleteDims();
dims[0] = rows_idx.size();
outs[i]->mutable_value()->mutable_data<T>(dims, send_slr.place());
outs[i]->mutable_rows()->clear();
if (rows_idx.size() > 0) {
for (auto idx : rows_idx) {
outs[i]->mutable_rows()->push_back(idx - abs_sections[i]);
}
auto dst = outs[i]->mutable_value()->mutable_data<T>(ctx.GetPlace());
for (size_t j = 0; j < rows_idx.size(); j++) {
if (platform::is_cpu_place(place)) {
memory::Copy(
platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(),
src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel);
} else {
#ifdef PADDLE_WITH_CUDA
auto stream = ctx.cuda_device_context().stream();
memory::Copy(platform::CUDAPlace(), dst + j * row_numel,
platform::CUDAPlace(),
src + outs_dense_idx[i][j] * row_numel,
sizeof(T) * row_numel, stream);
#else
PADDLE_THROW("Paddle is not compiled with GPU");
#endif
}
}
}
PADDLE_ENFORCE_EQ(rows_idx.size(), outs[i]->rows().size(),
"rows should has the same size with tensor dim 0");
}
} else { } else {
PADDLE_THROW("unsupported var type"); PADDLE_THROW("unsupported var type to send!");
} }
std::vector<distributed::VarHandlePtr> rets; std::vector<distributed::VarHandlePtr> rets;
......
...@@ -23,6 +23,7 @@ namespace paddle { ...@@ -23,6 +23,7 @@ namespace paddle {
namespace operators { namespace operators {
namespace distributed { namespace distributed {
template <typename T>
void send(const std::string& var_name, void send(const std::string& var_name,
const std::vector<std::string>& send_varnames, const std::vector<std::string>& send_varnames,
const std::vector<std::string>& epmap, const std::vector<std::string>& epmap,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册