Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
17c8014f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
17c8014f
编写于
11月 06, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete implementation
test=develop
上级
7939f835
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
63 addition
and
125 deletion
+63
-125
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
+6
-0
paddle/fluid/operators/fused_embedding_seq_pool_op.h
paddle/fluid/operators/fused_embedding_seq_pool_op.h
+57
-125
未找到文件。
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
浏览文件 @
17c8014f
...
@@ -93,6 +93,12 @@ class FusedEmbeddingSeqPoolOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -93,6 +93,12 @@ class FusedEmbeddingSeqPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"are supported, sum computes the weighted sum of the "
"are supported, sum computes the weighted sum of the "
"embedding results for each row."
)
"embedding results for each row."
)
.
SetDefault
(
"sum"
);
.
SetDefault
(
"sum"
);
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr
<
bool
>
(
"grad_inplace"
,
"(boolean, default false) "
"If the grad op reuse the input's variable."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"is_sparse"
,
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"(boolean, default false) "
"Sparse update."
)
"Sparse update."
)
...
...
paddle/fluid/operators/fused_embedding_seq_pool_op.h
浏览文件 @
17c8014f
...
@@ -31,62 +31,54 @@ using LoDTensor = framework::LoDTensor;
...
@@ -31,62 +31,54 @@ using LoDTensor = framework::LoDTensor;
using
SelectedRows
=
framework
::
SelectedRows
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
using
DDim
=
framework
::
DDim
;
template
<
typename
DeviceContext
,
typename
T
>
struct
EmbeddingVSumFunctor
{
void
operator
()(
const
DeviceContext
&
context
,
LoDTensor
*
table_t
,
LoDTensor
*
ids_t
,
LoDTensor
*
output_t
)
{
auto
*
table
=
table_t
->
data
<
T
>
();
int64_t
row_number
=
table
->
dims
()[
0
];
int64_t
row_width
=
table
->
dims
()[
1
];
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
auto
ids_lod
=
ids_t
->
LoD
()[
0
];
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
size_t
begin
=
ids_lod
[
i
];
PADDLE_ENFORCE_LT
(
ids
[
begin
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
begin
],
0
,
"ids %d"
,
i
);
blas
.
VCOPY
(
row_width
,
table
+
ids
[
begin
]
*
row_width
,
output
+
i
*
row_width
);
for
(
int64_t
r
=
ids_lod
[
i
]
+
1
;
r
<
ids_lod
[
i
+
1
];
++
r
)
{
PADDLE_ENFORCE_LT
(
ids
[
r
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
r
],
0
,
"ids %d"
,
i
);
blas
.
AXPY
(
row_width
,
1.
,
table
+
ids
[
r
]
*
row_width
,
output
+
i
*
row_width
);
}
}
}
};
template
<
typename
T
>
template
<
typename
T
>
class
LookupTable
Kernel
:
public
framework
::
OpKernel
<
T
>
{
class
FusedEmbeddingSeqPool
Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
LoDTensor
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
LoDTensor
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
auto
*
table_var
=
context
.
InputVar
(
"W"
);
LoDTensor
*
table_var
=
context
.
Input
<
LoDTensor
>
(
"W"
);
const
std
::
string
&
combiner_type
=
context
.
Attr
<
std
::
string
>
(
"combiner"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
if
(
combiner_type
==
"sum"
)
{
int64_t
ids_numel
=
ids_t
->
numel
();
EmbeddingVSumFunctor
<
T
>
functor
;
functor
(
context
.
template
device_context
(),
ids_t
,
output_t
,
table_var
);
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"ids %d"
,
i
);
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
row_width
*
sizeof
(
T
));
}
}
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
const
auto
&
table_t
=
table_var
->
Get
<
SelectedRows
>
();
int64_t
row_width
=
table_t
.
value
().
dims
()[
1
];
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
);
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists."
);
// memcpy(output + i * row_width, table + id_index * row_width,
// row_width * sizeof(T));
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
output
+
i
*
row_width
);
}
}
}
}
}
}
};
};
template
<
typename
T
>
template
<
typename
T
>
class
LookupTable
GradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
FusedEmbeddingSeqPool
GradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
table_var
=
context
.
InputVar
(
"W"
);
auto
*
table_var
=
context
.
InputVar
(
"W"
);
...
@@ -106,97 +98,37 @@ class LookupTableGradKernel : public framework::OpKernel<T> {
...
@@ -106,97 +98,37 @@ class LookupTableGradKernel : public framework::OpKernel<T> {
// Since paddings are not trainable and fixed in forward, the gradient of
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
// paddings makes no sense and we don't deal with it in backward.
if
(
is_sparse
)
{
if
(
is_sparse
)
{
// auto start = std::chrono::system_clock::now();
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
auto
*
d_table
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int64_t
ids_num
=
ids
->
numel
();
int64_t
ids_num
=
ids
->
numel
();
// auto end = std::chrono::system_clock::now()
;
auto
lod
=
ids
->
lod
()[
0
]
;
// std::chrono::duration<double> diff = end - start
;
int64_t
row_width
=
table_dim
[
1
]
;
// auto copy_start = std::chrono::system_clock::now();
framework
::
Vector
<
int64_t
>
new_rows
;
std
::
vector
<
int64_t
>
new_rows
;
new_rows
.
resize
(
ids_num
);
new_rows
.
resize
(
ids_num
);
std
::
memcpy
(
&
new_rows
[
0
],
ids_data
,
ids_num
*
sizeof
(
int64_t
));
std
::
memcpy
(
&
new_rows
[
0
],
ids_data
,
ids_num
*
sizeof
(
int64_t
));
// for (int64_t i = 0; i < ids_num; i++) {
// new_rows.push_back(ids_data[i]);
// }
// auto copy_end = std::chrono::system_clock::now();
// std::chrono::duration<double> copy_diff = copy_end - copy_start;
// diff += copy_diff;
// LOG(ERROR) << "run emb_grad copy end, cost: " << copy_diff.count() << "
// " << ids_num;
// copy_start = std::chrono::system_clock::now();
d_table
->
set_rows
(
new_rows
);
d_table
->
set_rows
(
new_rows
);
auto
*
d_table_value
=
d_table
->
mutable_value
();
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]});
d_table_value
->
Resize
({
ids_num
,
row_width
});
d_table_value
->
ShareDataWith
(
*
d_output
);
T
*
d_table_data
=
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// d_table_value->mutable_data<T>(context.GetPlace());
const
T
*
d_output_data
=
d_output
->
data
<
T
>
();
// // copy_end = std::chrono::system_clock::now();
auto
blas
=
math
::
GetBlas
<
T
>
(
context
);
// // copy_diff = copy_end - copy_start;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
// // diff += copy_diff;
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
// // LOG(ERROR) << "run emb_grad resize table end, cost: " <<
int64_t
in_offset
=
lod
[
i
]
*
row_width
;
// // copy_diff.count() << " " << ids_num;
const
T
*
out_pos
=
d_output_data
+
i
*
row_width
;
T
*
in_pos
=
d_table_data
+
in_offset
;
// // copy_start = std::chrono::system_clock::now();
for
(
int
r
=
0
;
r
!=
h
;
++
r
)
{
// d_table->set_height(table_dim[0]);
blas
.
VCOPY
(
row_width
,
out_pos
,
in_pos
+
r
*
row_width
);
// auto *d_output_data = d_output->data<T>();
// auto *d_table_data = d_table_value->data<T>();
// // copy_end = std::chrono::system_clock::now();
// // copy_diff = copy_end - copy_start;
// // diff += copy_diff;
// // LOG(ERROR) << "run emb_grad set height end, cost: " <<
// // copy_diff.count() << " " << ids_num;
// auto d_output_dims = d_output->dims();
// PADDLE_ENFORCE_EQ(
// d_table_value->dims(),
// framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
// // copy_start = std::chrono::system_clock::now();
// auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
// blas.VCOPY(d_output->numel(), d_output_data, d_table_data);
// cblas_scopy(d_output->numel(), d_output_data, 1, d_table_data, 1);
// // for (int i = 0; i != d_output->numel(), ++i) {
// // *(d_table_data++) = *(d_output_data++);
// // }
// // memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
// // copy_end = std::chrono::system_clock::now();
// // copy_diff = copy_end - copy_start;
// // diff += copy_diff;
// // LOG(ERROR) << "run emb_grad core end, cost: " << copy_diff.count()
// << "
// // " << ids_num << " " << d_output->numel();
// // LOG(ERROR) << "run emb_grad end, cost: " << diff.count();
}
else
{
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int
N
=
table_dim
[
0
];
int
D
=
table_dim
[
1
];
auto
*
d_output_data
=
d_output
->
data
<
T
>
();
auto
*
d_table_data
=
d_table
->
mutable_data
<
T
>
(
context
.
GetPlace
());
memset
(
d_table_data
,
0
,
d_table
->
numel
()
*
sizeof
(
T
));
for
(
int64_t
i
=
0
;
i
<
ids
->
numel
();
++
i
)
{
PADDLE_ENFORCE_LT
(
ids_data
[
i
],
N
);
PADDLE_ENFORCE_GE
(
ids_data
[
i
],
0
);
for
(
int
j
=
0
;
j
<
D
;
++
j
)
{
d_table_data
[
ids_data
[
i
]
*
D
+
j
]
+=
d_output_data
[
i
*
D
+
j
];
}
}
}
}
}
else
{
LOG
(
ERROR
)
<<
"Dense is not supported in fused_embedding_seq_pool_op now"
;
}
}
}
}
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录