Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1543eeb4
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1543eeb4
编写于
8月 16, 2017
作者:
S
superjom
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init
上级
9eaef753
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
52 addition
and
8 deletion
+52
-8
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+7
-0
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+0
-1
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+6
-6
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+39
-1
未找到文件。
paddle/framework/pybind.cc
浏览文件 @
1543eeb4
...
...
@@ -275,6 +275,13 @@ All parameter, weight, gradient are variables in Paddle.
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
set_stepnet
(
net
);
});
rnn
.
def
(
"backward"
,
[](
const
operators
::
RecurrentOp
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
const
auto
&
op
=
*
static_cast
<
const
OperatorBase
*>
(
&
forwardOp
);
return
Backward
(
op
,
no_grad_vars
);
});
ExposeOperator
(
rnn
);
m
.
def
(
"unique_integer"
,
UniqueIntegerGenerator
);
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
1543eeb4
...
...
@@ -77,7 +77,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op.
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"stepnet_ op has no outputs"
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"net_op has no outputs"
);
if
(
seq_len_
>
step_scopes
->
size
())
{
for
(
size_t
i
=
step_scopes
->
size
();
i
<
seq_len_
;
++
i
)
{
...
...
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
1543eeb4
...
...
@@ -29,13 +29,13 @@ def get_numeric_gradient(op,
local_scope
=
None
):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array
.
:param output_name: The final output variable name.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
1543eeb4
...
...
@@ -3,6 +3,7 @@ import paddle.v2.framework.core as core
import
unittest
import
numpy
as
np
from
paddle.v2.framework.op
import
Operator
,
RecurrentOp
from
gradient_checker
import
GradientChecker
def
py_sigmoid
(
x
):
...
...
@@ -69,7 +70,7 @@ def create_tensor(scope, name, shape, np_data):
return
tensor
class
TestRecurrentOp
(
unittest
.
TestCase
):
class
RecurrentOpTest
(
unittest
.
TestCase
):
'''
Test RNNOp
...
...
@@ -164,5 +165,42 @@ class TestRecurrentOp(unittest.TestCase):
self
.
assertEqual
(
pd_output
.
shape
,
py_output
.
shape
)
class
RecurrentGradientOpTest
(
unittest
.
TestCase
):
def
create_forward_op
(
self
):
self
.
forward_op
=
RecurrentOp
(
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
outlinks
=
[
"h"
],
step_scopes
=
"step_scopes"
,
# attributes
inlink_alias
=
[
"x@alias"
],
outlink_alias
=
[
"h@alias"
],
pre_memories
=
[
"h@pre"
],
memories
=
[
"h@alias"
])
# create a stepnet for RNN
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x@alias"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"add_two"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@alias"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
add_op
(
op
)
stepnet
.
complete_add_op
(
True
)
self
.
forward_op
.
set_stepnet
(
stepnet
)
def
create_gradient_op
(
self
):
a
=
set
()
backward_op
=
core
.
RecurrentOp
.
backward
(
self
.
forward_op
,
a
)
def
test_grad
(
self
):
self
.
create_forward_op
()
self
.
create_gradient_op
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录