提交 14df92fe 编写于 作者: D dengkaipeng

fix spell error. test=develop

上级 144016fc
......@@ -156,8 +156,8 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
also includes confidence score of the box and class one-hot key of each anchor box.
Assume the 4 location coordinates is :math:`t_x, t_y, t_w, t_h`, the box predictions
should be following:
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
should be as follows:
$$
b_x = \\sigma(t_x) + c_x
......@@ -172,12 +172,12 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
b_h = p_h e^{t_h}
$$
In the equaltion above, :math:`c_x, c_y` is the left top corner of current grid
In the equation above, :math:`c_x, c_y` is the left top corner of current grid
and :math:`p_w, p_h` is specified by anchors.
As for confidence score, it is the logistic regression value of IoU between
anchor boxes and ground truth boxes, the score of the anchor box which has
the max IoU should be 1, and if the anchor box has IoU bigger then ignore
the max IoU should be 1, and if the anchor box has IoU bigger than ignore
thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the yolov3 loss consist of three major parts, box location loss,
......@@ -192,13 +192,13 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
In order to trade off box coordinate losses between big boxes and small
boxes, box coordinate losses will be mutiplied by scale weight, which is
calculated as follow.
calculated as follows.
$$
weight_{box} = 2.0 - t_w * t_h
$$
Final loss will be represented as follow.
Final loss will be represented as follows.
$$
loss = (loss_{xy} + loss_{wh}) * weight_{box}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册