Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
14949521
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
14949521
编写于
5月 20, 2021
作者:
L
limingshu
提交者:
GitHub
5月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Binary functor envoking of elementwise broadcast (#32928)
上级
6f8de31d
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
193 addition
and
170 deletion
+193
-170
paddle/fluid/operators/abs_op.cu
paddle/fluid/operators/abs_op.cu
+3
-2
paddle/fluid/operators/activation_op.cu
paddle/fluid/operators/activation_op.cu
+5
-5
paddle/fluid/operators/elementwise/elementwise_add_op.cc
paddle/fluid/operators/elementwise/elementwise_add_op.cc
+0
-9
paddle/fluid/operators/elementwise/elementwise_add_op.cu
paddle/fluid/operators/elementwise/elementwise_add_op.cu
+15
-21
paddle/fluid/operators/elementwise/elementwise_add_op.h
paddle/fluid/operators/elementwise/elementwise_add_op.h
+13
-19
paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h
...fluid/operators/elementwise/elementwise_op_broadcast.cu.h
+148
-105
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
+2
-8
paddle/fluid/platform/fast_divmod.h
paddle/fluid/platform/fast_divmod.h
+7
-1
未找到文件。
paddle/fluid/operators/abs_op.cu
浏览文件 @
14949521
...
...
@@ -52,8 +52,9 @@ class AbsKernel<platform::CUDADeviceContext, T>
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
out
};
auto
functor
=
CudaAbsFunctor
<
T
>
();
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
math
::
Real
<
T
>>
(
dev_ctx
,
ins
,
&
outs
,
functor
);
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
math
::
Real
<
T
>>
(
dev_ctx
,
ins
,
&
outs
,
functor
);
}
};
...
...
paddle/fluid/operators/activation_op.cu
浏览文件 @
14949521
...
...
@@ -1316,8 +1316,8 @@ class ActivationCudaKernel
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
ctx
.
Attr
<
float
>
(
attr
.
first
);
}
Launch
ElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
functor
);
Launch
SameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
functor
);
}
};
...
...
@@ -1346,16 +1346,16 @@ class ActivationGradCudaKernel
if
(
static_cast
<
int
>
(
Functor
::
FwdDeps
())
==
static_cast
<
int
>
(
kDepOut
))
{
// Only need forward output Out
ins
.
push_back
(
out
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
Launch
SameDims
ElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
functor
);
}
else
if
(
static_cast
<
int
>
(
Functor
::
FwdDeps
())
==
static_cast
<
int
>
(
kDepX
))
{
// Only need forward input X
ins
.
push_back
(
x
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
Launch
SameDims
ElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
functor
);
}
else
{
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
Launch
SameDims
ElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
functor
);
}
}
...
...
paddle/fluid/operators/elementwise/elementwise_add_op.cc
浏览文件 @
14949521
...
...
@@ -69,15 +69,6 @@ struct SameDimsElemwiseAdd<
}
};
template
<
typename
T
>
struct
BroadcastElemwiseAdd
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
default_elementwise_add
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
,
x
,
y
,
z
);
}
};
class
ElementwiseAddOpMaker
:
public
ElementwiseOpMaker
{
protected:
std
::
string
GetName
()
const
override
{
return
"Add"
;
}
...
...
paddle/fluid/operators/elementwise/elementwise_add_op.cu
浏览文件 @
14949521
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
#include "paddle/fluid/platform/float16.h"
...
...
@@ -40,29 +39,24 @@ struct CudaAddFunctor {
};
template
<
typename
T
>
struct
SameDimsElemwiseAdd
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
class
ElementwiseAddKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
axis
==
-
1
?
std
::
abs
(
x
->
dims
().
size
()
-
y
->
dims
().
size
())
:
axis
;
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
z
};
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
ins
,
&
outs
,
CudaAddFunctor
<
T
>
());
}
};
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
template
<
typename
T
>
struct
BroadcastElemwiseAdd
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
out
)
{
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
};
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
axis
==
-
1
?
std
::
abs
(
x
->
dims
().
size
()
-
y
->
dims
().
size
())
:
axis
;
LaunchBroadcastElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
>
(
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
ins
,
out
,
CudaAddFunctor
<
T
>
(),
axis
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
CudaAddFunctor
<
T
>
());
}
};
...
...
paddle/fluid/operators/elementwise/elementwise_add_op.h
浏览文件 @
14949521
...
...
@@ -26,7 +26,7 @@ limitations under the License. */
#include <cuda.h>
#include <cuda_fp16.h>
#include "cub/cub.cuh"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#endif
#ifdef __HIPCC__
#include <hip/hip_fp16.h>
...
...
@@ -40,9 +40,10 @@ namespace paddle {
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
void
default_elementwise_add
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
void
LaunchBroadcastElementwiseCpuKernel
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
)
{
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
...
...
@@ -62,13 +63,6 @@ struct SameDimsElemwiseAdd {
framework
::
Tensor
*
z
);
};
template
<
typename
DeviceContext
,
typename
T
,
class
Enable
=
void
>
struct
BroadcastElemwiseAdd
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
);
};
template
<
typename
DeviceContext
,
typename
T
>
class
ElementwiseAddKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -77,13 +71,13 @@ class ElementwiseAddKernel : public framework::OpKernel<T> {
auto
*
y
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dims_equal
=
x
->
dims
()
==
y
->
dims
();
if
(
dims_equal
)
{
SameDimsElemwiseAdd
<
DeviceContext
,
T
>
same_dims_add
;
same_dims_add
(
ctx
,
x
,
y
,
z
);
if
(
x
->
dims
()
==
y
->
dims
())
{
SameDimsElemwiseAdd
<
platform
::
CPUDeviceContext
,
T
>
LaunchElementwiseCpuKernel
;
LaunchElementwiseCpuKernel
(
ctx
,
x
,
y
,
z
);
}
else
{
BroadcastElemwiseAdd
<
DeviceContext
,
T
>
broadcast_add
;
broadcast_add
(
ctx
,
x
,
y
,
z
);
LaunchBroadcastElementwiseCpuKernel
<
platform
::
CPUDeviceContext
,
T
>
(
ctx
,
x
,
y
,
z
);
}
}
};
...
...
@@ -469,8 +463,8 @@ class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
GetDoubleGradSafeTensor
<
DeviceContext
,
T
>
(
ctx
,
y
,
ddy
,
&
ddy_safe
);
ddout
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
default_elementwise_add
<
DeviceContext
,
T
>
(
ctx
,
&
ddx_safe
,
&
ddy
_safe
,
ddout
);
LaunchBroadcastElementwiseCpuKernel
<
DeviceContext
,
T
>
(
ctx
,
&
ddx
_safe
,
&
ddy_safe
,
ddout
);
}
}
};
...
...
paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h
浏览文件 @
14949521
...
...
@@ -14,7 +14,7 @@
#pragma once
#include "paddle/fluid/operators/elementwise/elementwise_op_
broadcast_
impl.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -28,7 +28,8 @@ struct DimensionsTransform {
std
::
vector
<
DimVector
>
in_dims
;
private:
// 1. To compensate the lackage of input_tensors` dimension;
// To compensate the lackage of input_tensors` dimension with input variable
// 'axis'
void
InputDimensionsExtend
(
int
N
,
int
axis
)
{
for
(
auto
&
in_dim
:
in_dims
)
{
int64_t
in_idx
=
0
;
...
...
@@ -70,7 +71,7 @@ struct DimensionsTransform {
}
template
<
typename
MergeFunctor
>
__inline__
void
DimensionsReorganise
(
MergeFunctor
merge_func
,
int
N
)
{
__inline__
void
MergeDimensions
(
MergeFunctor
merge_func
,
int
N
)
{
auto
VectorReorganise
=
[](
DimVector
*
vec
,
int
l_idx
,
int
m_idx
)
{
(
*
vec
)[
m_idx
-
1
]
=
std
::
accumulate
(
vec
->
begin
()
+
l_idx
,
vec
->
begin
()
+
m_idx
,
1
,
...
...
@@ -139,7 +140,7 @@ struct DimensionsTransform {
// To Merge the dimensions of input_tensors while the consequtive
// equal-dimensions appears.
MergeFunctor
merge_ptr
=
merge_sequential_dims
;
DimensionsReorganise
<
MergeFunctor
>
(
merge_ptr
,
N
);
MergeDimensions
<
MergeFunctor
>
(
merge_ptr
,
N
);
int
min_idx
=
0
;
int
min_val
=
std
::
accumulate
(
in_dims
[
0
].
begin
(),
in_dims
[
0
].
end
(),
1
,
...
...
@@ -155,12 +156,12 @@ struct DimensionsTransform {
// To Merge the dimension of input_tensors while the consequtive
// 1-value-dimensions appears.
merge_ptr
=
merge_sequential_one_dims
;
DimensionsReorganise
<
MergeFunctor
>
(
merge_ptr
,
N
);
MergeDimensions
<
MergeFunctor
>
(
merge_ptr
,
N
);
std
::
swap
(
in_dims
[
min_idx
],
in_dims
[
0
]);
}
};
struct
CalculateInputStrides
{
struct
StridesCalculation
{
std
::
vector
<
std
::
vector
<
uint32_t
>>
strides
;
std
::
vector
<
FastDivMod
>
divmoders
;
...
...
@@ -181,9 +182,9 @@ struct CalculateInputStrides {
}
public:
explicit
CalculateInputStrides
(
const
int64_t
&
dim_size
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
in_dims
,
const
std
::
vector
<
int64_t
>
&
out_dims
)
{
explicit
StridesCalculation
(
const
int64_t
&
dim_size
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
in_dims
,
const
std
::
vector
<
int64_t
>
&
out_dims
)
{
const
auto
N
=
in_dims
.
size
();
divmoders
.
resize
(
dim_size
);
strides
.
resize
(
N
,
std
::
vector
<
uint32_t
>
(
dim_size
,
1
));
...
...
@@ -195,34 +196,40 @@ struct CalculateInputStrides {
}
};
template
<
typename
T
,
ElementwiseType
ET
,
int
VecSize
,
int
kDims
>
template
<
typename
T
,
typename
Functor
,
ElementwiseType
ET
,
int
VecSize
,
int
kDims
>
struct
BroadcastArgsWarpper
{
using
DimsVec
=
CudaAlignedVector
<
T
,
VecSize
>
;
using
VecType
=
CudaAlignedVector
<
T
,
VecSize
>
;
T
*
out_data
;
VecType
*
vec_out_data
;
const
T
*
__restrict__
in_data
[
ET
];
uint32_t
strides
[
ET
][
framework
::
DDim
::
kMaxRank
];
const
VecType
*
__restrict__
vec_in_data
[
ET
];
bool
no_broadcast
[
ET
];
FastDivMod
divmoders
[
kDims
];
uint32_t
scalar_offset
;
uint32_t
strides
[
ET
][
framework
::
DDim
::
kMaxRank
];
uint32_t
scalar_cal_offset
;
Functor
func
;
HOSTDEVICE
BroadcastArgsWarpper
(
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
const
CalculateInputStrides
&
offset_calculator
,
framework
::
Tensor
*
out
,
int
scalar_offset
)
:
scalar_
offset
(
scalar_offset
)
{
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
framework
::
Tensor
*
out
,
int
scalar_cal_offset
,
Functor
func
,
const
StridesCalculation
&
offset_calculator
)
:
scalar_
cal_offset
(
scalar_cal_offset
),
func
(
func
)
{
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
in_data
[
j
]
=
ins
[
j
]
->
data
<
T
>
();
vec_in_data
[
j
]
=
reinterpret_cast
<
const
VecType
*>
(
in_data
[
j
]);
no_broadcast
[
j
]
=
ins
[
j
]
->
dims
()
==
out
->
dims
()
?
true
:
false
;
memcpy
(
strides
[
j
],
offset_calculator
.
strides
[
j
].
data
(),
kDims
*
sizeof
(
uint32_t
));
}
out_data
=
out
->
data
<
T
>
();
vec_out_data
=
reinterpret_cast
<
VecType
*>
(
out_data
);
memcpy
(
divmoders
,
offset_calculator
.
divmoders
.
data
(),
kDims
*
sizeof
(
FastDivMod
));
}
__device__
__forceinline__
uint32_t
Get
DivmodOffset
(
int
idx
,
int
in_idx
)
{
__device__
__forceinline__
uint32_t
Get
OffsetByDivmod
(
int
idx
,
int
in_idx
)
{
uint32_t
offset
=
0
;
#pragma unroll(kDims)
...
...
@@ -234,120 +241,127 @@ struct BroadcastArgsWarpper {
return
offset
;
}
__device__
__forceinline__
void
CommonVector
(
DimsVec
args
[],
int
tid
,
int
idx
)
{
const
DimsVec
*
__restrict__
vec_data
=
reinterpret_cast
<
const
DimsVec
*
__restrict__
>
(
in_data
[
idx
]);
args
[
idx
]
=
vec_data
[
tid
];
__device__
__forceinline__
void
LoadVectorizedDataCommon
(
VecType
*
vector_args
,
int
tid
,
int
idx
)
{
*
vector_args
=
vec_in_data
[
idx
][
tid
];
}
__device__
__forceinline__
void
DivmodVector
(
DimsVec
args
[],
int
tid
,
int
idx
)
{
__device__
__forceinline__
void
LoadVectorizedDataByDivmod
(
T
*
scalar_args
,
int
tid
,
int
idx
)
{
int
index
=
tid
*
VecSize
;
#pragma unroll(VecSize)
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
uint32_t
offset
=
Get
DivmodOffset
(
index
+
i
,
idx
);
args
[
idx
].
val
[
i
]
=
in_data
[
idx
][
offset
];
uint32_t
offset
=
Get
OffsetByDivmod
(
index
+
i
,
idx
);
scalar_args
[
i
]
=
in_data
[
idx
][
offset
];
}
}
__device__
__forceinline__
void
CommonScalar
(
T
args
[],
int
tid
,
int
idx
)
{
args
[
idx
]
=
in_data
[
idx
][
tid
+
scalar_offset
];
__device__
__forceinline__
void
LoadScalarizedDataCommon
(
T
args
[],
int
tid
,
int
idx
)
{
args
[
idx
]
=
in_data
[
idx
][
tid
+
scalar_cal_offset
];
}
__device__
__forceinline__
void
DivmodScalar
(
T
args
[],
int
tid
,
int
idx
)
{
auto
offset
=
GetDivmodOffset
(
tid
+
scalar_offset
,
idx
);
__device__
__forceinline__
void
LoadScalarizedDataByDivmod
(
T
args
[],
int
tid
,
int
idx
)
{
auto
offset
=
GetOffsetByDivmod
(
tid
+
scalar_cal_offset
,
idx
);
args
[
idx
]
=
in_data
[
idx
][
offset
];
}
__device__
__forceinline__
void
LoadVector
(
DimsVec
args
[],
int
tid
)
{
__device__
__forceinline__
void
LoadVectorizedData
(
T
(
*
args
)[
VecSize
],
int
tid
)
{
#pragma unroll(ET)
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
if
(
no_broadcast
[
j
])
{
CommonVector
(
args
,
tid
,
j
);
VecType
*
vector_args
=
reinterpret_cast
<
VecType
*>
(
args
[
j
]);
LoadVectorizedDataCommon
(
vector_args
,
tid
,
j
);
}
else
{
DivmodVector
(
args
,
tid
,
j
);
LoadVectorizedDataByDivmod
(
args
[
j
]
,
tid
,
j
);
}
}
}
__device__
__forceinline__
void
LoadScalar
(
T
args
[],
int
tid
)
{
__device__
__forceinline__
void
LoadScalar
izedData
(
T
args
[],
int
tid
)
{
#pragma unroll(ET)
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
if
(
no_broadcast
[
j
])
{
CommonScalar
(
args
,
tid
,
j
);
LoadScalarizedDataCommon
(
args
,
tid
,
j
);
}
else
{
DivmodScalar
(
args
,
tid
,
j
);
LoadScalarizedDataByDivmod
(
args
,
tid
,
j
);
}
}
}
__device__
__forceinline__
void
StoreVector
(
DimsVec
args
[],
int
tid
)
{
DimsVec
*
vec_out
=
reinterpret_cast
<
DimsVec
*>
(
out_data
);
vec_out
[
tid
]
=
args
[
0
];
__device__
__forceinline__
void
StoreVectorizedData
(
T
(
*
args
)[
VecSize
],
int
tid
)
{
VecType
*
args_out
=
reinterpret_cast
<
VecType
*>
(
args
[
0
]);
vec_out_data
[
tid
]
=
*
args_out
;
}
__device__
__forceinline__
void
StoreScalar
(
T
args
[],
int
tid
)
{
out_data
[
scalar_offset
+
tid
]
=
args
[
0
];
__device__
__forceinline__
void
StoreScalar
izedData
(
T
args
[],
int
tid
)
{
out_data
[
scalar_
cal_
offset
+
tid
]
=
args
[
0
];
}
};
template
<
typename
T
,
typename
BroadcastArgsWarpper
,
ElementwiseType
ET
>
__device__
inline
void
ScalarizedBroadcastKernelImpl
(
BroadcastArgsWarpper
data_transf
er
,
int
tid
)
{
BroadcastArgsWarpper
broadcast_warpp
er
,
int
tid
)
{
T
args
[
ET
];
data_transfer
.
LoadScalar
(
args
,
tid
);
broadcast_warpper
.
LoadScalarizedData
(
args
,
tid
);
#pragma unroll(ET)
for
(
int
j
=
1
;
j
<
ET
;
++
j
)
{
args
[
0
]
+=
args
[
j
]
;
args
[
0
]
=
broadcast_warpper
.
func
(
args
)
;
}
data_transfer
.
StoreScalar
(
args
,
tid
);
broadcast_warpper
.
StoreScalarizedData
(
args
,
tid
);
}
template
<
typename
T
,
typename
BroadcastArgsWarpper
,
ElementwiseType
ET
,
int
VecSize
>
__device__
inline
void
VectorizedBroadcastKernelImpl
(
BroadcastArgsWarpper
data_transf
er
,
int
tid
)
{
using
VecT
=
CudaAlignedVector
<
T
,
VecSize
>
;
VecT
args
[
ET
];
data_transfer
.
LoadVector
(
args
,
tid
);
BroadcastArgsWarpper
broadcast_warpp
er
,
int
tid
)
{
T
ins
[
ET
]
;
T
args
[
ET
][
VecSize
];
broadcast_warpper
.
LoadVectorizedData
(
args
,
tid
);
#pragma unroll(ET)
for
(
int
j
=
1
;
j
<
ET
;
++
j
)
{
#pragma unroll(VecSize)
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
args
[
0
].
val
[
i
]
+=
args
[
j
].
val
[
i
];
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
#pragma unroll(ET)
for
(
int
j
=
0
;
j
<
ET
;
++
j
)
{
ins
[
j
]
=
args
[
j
][
i
];
}
args
[
0
][
i
]
=
broadcast_warpper
.
func
(
ins
);
}
data_transfer
.
StoreVector
(
args
,
tid
);
broadcast_warpper
.
StoreVectorizedData
(
args
,
tid
);
}
template
<
typename
T
,
typename
BroadcastArgsWarpper
,
ElementwiseType
ET
,
int
VecSize
>
__global__
void
ElementwiseBroadcastKernel
(
BroadcastArgsWarpper
data_transfer
,
int
main_tid
,
int
tail_tid
)
{
__global__
void
ElementwiseBroadcastKernel
(
BroadcastArgsWarpper
broadcast_warpper
,
int
main_tid
,
int
tail_tid
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
// Aimming at vectorized calculation of major data whose length is max
// multipler of VecSize.
// Vectorized calculation of major data whose length is the max multipler of
// VecSize,
// eg: Calcualting the front 1024-length data in total 1027 data once VecSize
// is 4.
if
(
tid
<
main_tid
)
{
VectorizedBroadcastKernelImpl
<
T
,
BroadcastArgsWarpper
,
ET
,
VecSize
>
(
data_transf
er
,
tid
);
broadcast_warpp
er
,
tid
);
}
// Aimming at scalar calculation of rest data whose lenght cannot fulfill
// VecSize.
// Scalarzed calculation of rest data whose lenght cannot fulfill VecSize.
// eg: Calcualting the rest 3-length data in total 1027 data once VecSize is
// 4.
if
(
tid
<
tail_tid
)
{
ScalarizedBroadcastKernelImpl
<
T
,
BroadcastArgsWarpper
,
ET
>
(
data_transfer
,
tid
);
ScalarizedBroadcastKernelImpl
<
T
,
BroadcastArgsWarpper
,
ET
>
(
broadcast_warpper
,
tid
);
}
}
template
<
typename
T
,
ElementwiseType
ET
,
int
VecSize
=
1
>
template
<
typename
T
,
ElementwiseType
ET
,
int
VecSize
,
typename
Functor
>
void
LaunchBroadcastKernelForDifferentDimSize
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
framework
::
Tensor
*
out
,
int
axis
)
{
int
axis
,
Functor
func
)
{
int
numel
=
out
->
numel
();
const
int
threads
=
256
;
int
blocks
=
((
numel
+
VecSize
-
1
)
/
VecSize
+
threads
-
1
)
/
threads
;
...
...
@@ -357,72 +371,72 @@ void LaunchBroadcastKernelForDifferentDimSize(
auto
stream
=
ctx
.
stream
();
const
auto
merge_dims
=
DimensionsTransform
(
ins
,
out
->
dims
(),
axis
);
const
auto
offset_calculator
=
CalculateInputStrides
(
const
auto
offset_calculator
=
StridesCalculation
(
merge_dims
.
dim_size
,
merge_dims
.
in_dims
,
merge_dims
.
out_dims
);
switch
(
merge_dims
.
dim_size
)
{
case
1
:
{
auto
data_transfer
=
BroadcastArgsWarpper
<
T
,
ET
,
VecSize
,
1
>
(
ins
,
o
ffset_calculator
,
out
,
vec_len
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
data_transf
er
),
ET
,
auto
broadcast_warpper
=
BroadcastArgsWarpper
<
T
,
Functor
,
ET
,
VecSize
,
1
>
(
ins
,
o
ut
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
broadcast_warpp
er
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
data_transf
er
,
main_tid
,
tail_tid
);
broadcast_warpp
er
,
main_tid
,
tail_tid
);
break
;
}
case
2
:
{
auto
data_transfer
=
BroadcastArgsWarpper
<
T
,
ET
,
VecSize
,
2
>
(
ins
,
o
ffset_calculator
,
out
,
vec_len
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
data_transf
er
),
ET
,
auto
broadcast_warpper
=
BroadcastArgsWarpper
<
T
,
Functor
,
ET
,
VecSize
,
2
>
(
ins
,
o
ut
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
broadcast_warpp
er
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
data_transf
er
,
main_tid
,
tail_tid
);
broadcast_warpp
er
,
main_tid
,
tail_tid
);
break
;
}
case
3
:
{
auto
data_transfer
=
BroadcastArgsWarpper
<
T
,
ET
,
VecSize
,
3
>
(
ins
,
o
ffset_calculator
,
out
,
vec_len
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
data_transf
er
),
ET
,
auto
broadcast_warpper
=
BroadcastArgsWarpper
<
T
,
Functor
,
ET
,
VecSize
,
3
>
(
ins
,
o
ut
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
broadcast_warpp
er
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
data_transf
er
,
main_tid
,
tail_tid
);
broadcast_warpp
er
,
main_tid
,
tail_tid
);
break
;
}
case
4
:
{
auto
data_transfer
=
BroadcastArgsWarpper
<
T
,
ET
,
VecSize
,
4
>
(
ins
,
o
ffset_calculator
,
out
,
vec_len
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
data_transf
er
),
ET
,
auto
broadcast_warpper
=
BroadcastArgsWarpper
<
T
,
Functor
,
ET
,
VecSize
,
4
>
(
ins
,
o
ut
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
broadcast_warpp
er
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
data_transf
er
,
main_tid
,
tail_tid
);
broadcast_warpp
er
,
main_tid
,
tail_tid
);
break
;
}
case
5
:
{
auto
data_transfer
=
BroadcastArgsWarpper
<
T
,
ET
,
VecSize
,
5
>
(
ins
,
o
ffset_calculator
,
out
,
vec_len
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
data_transf
er
),
ET
,
auto
broadcast_warpper
=
BroadcastArgsWarpper
<
T
,
Functor
,
ET
,
VecSize
,
5
>
(
ins
,
o
ut
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
broadcast_warpp
er
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
data_transf
er
,
main_tid
,
tail_tid
);
broadcast_warpp
er
,
main_tid
,
tail_tid
);
break
;
}
case
6
:
{
auto
data_transfer
=
BroadcastArgsWarpper
<
T
,
ET
,
VecSize
,
6
>
(
ins
,
o
ffset_calculator
,
out
,
vec_len
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
data_transf
er
),
ET
,
auto
broadcast_warpper
=
BroadcastArgsWarpper
<
T
,
Functor
,
ET
,
VecSize
,
6
>
(
ins
,
o
ut
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
broadcast_warpp
er
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
data_transf
er
,
main_tid
,
tail_tid
);
broadcast_warpp
er
,
main_tid
,
tail_tid
);
break
;
}
case
7
:
{
auto
data_transfer
=
BroadcastArgsWarpper
<
T
,
ET
,
VecSize
,
7
>
(
ins
,
o
ffset_calculator
,
out
,
vec_len
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
data_transf
er
),
ET
,
auto
broadcast_warpper
=
BroadcastArgsWarpper
<
T
,
Functor
,
ET
,
VecSize
,
7
>
(
ins
,
o
ut
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
broadcast_warpp
er
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
data_transf
er
,
main_tid
,
tail_tid
);
broadcast_warpp
er
,
main_tid
,
tail_tid
);
break
;
}
case
8
:
{
auto
data_transfer
=
BroadcastArgsWarpper
<
T
,
ET
,
VecSize
,
8
>
(
ins
,
o
ffset_calculator
,
out
,
vec_len
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
data_transf
er
),
ET
,
auto
broadcast_warpper
=
BroadcastArgsWarpper
<
T
,
Functor
,
ET
,
VecSize
,
8
>
(
ins
,
o
ut
,
vec_len
,
func
,
offset_calculator
);
ElementwiseBroadcastKernel
<
T
,
decltype
(
broadcast_warpp
er
),
ET
,
VecSize
><<<
blocks
,
threads
,
0
,
stream
>>>
(
data_transf
er
,
main_tid
,
tail_tid
);
broadcast_warpp
er
,
main_tid
,
tail_tid
);
break
;
}
default:
{
...
...
@@ -437,9 +451,11 @@ void LaunchBroadcastKernelForDifferentDimSize(
template
<
ElementwiseType
ET
,
typename
T
,
typename
Functor
>
void
LaunchBroadcastElementwiseCudaKernel
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
framework
::
Tensor
*
out
,
Functor
func
,
int
axis
)
{
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
std
::
vector
<
framework
::
Tensor
*>
*
outs
,
int
axis
,
Functor
func
)
{
static_assert
(
ET
==
(
ElementwiseType
)
2
,
"Only Support binary calculation."
);
int
in_vec_size
=
4
;
framework
::
Tensor
*
out
=
(
*
outs
)[
0
];
for
(
auto
*
in
:
ins
)
{
auto
temp_size
=
GetVectorizedSizeImpl
<
T
>
(
in
->
data
<
T
>
());
in_vec_size
=
in
->
dims
()
==
out
->
dims
()
?
std
::
min
(
temp_size
,
in_vec_size
)
...
...
@@ -450,19 +466,46 @@ void LaunchBroadcastElementwiseCudaKernel(
switch
(
vec_size
)
{
case
4
:
{
LaunchBroadcastKernelForDifferentDimSize
<
T
,
ET
,
4
>
(
ctx
,
ins
,
out
,
axis
);
LaunchBroadcastKernelForDifferentDimSize
<
T
,
ET
,
4
>
(
ctx
,
ins
,
out
,
axis
,
func
);
break
;
}
case
2
:
{
LaunchBroadcastKernelForDifferentDimSize
<
T
,
ET
,
2
>
(
ctx
,
ins
,
out
,
axis
);
LaunchBroadcastKernelForDifferentDimSize
<
T
,
ET
,
2
>
(
ctx
,
ins
,
out
,
axis
,
func
);
break
;
}
case
1
:
{
LaunchBroadcastKernelForDifferentDimSize
<
T
,
ET
,
1
>
(
ctx
,
ins
,
out
,
axis
,
func
);
break
;
}
default:
{
LaunchBroadcastKernelForDifferentDimSize
<
T
,
ET
,
1
>
(
ctx
,
ins
,
out
,
axis
);
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unsupported vectorized size: %d !"
,
vec_size
));
break
;
}
}
}
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutType
,
typename
Functor
>
void
LaunchElementwiseCudaKernel
(
const
platform
::
CUDADeviceContext
&
cuda_ctx
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
std
::
vector
<
framework
::
Tensor
*>
*
outs
,
int
axis
,
Functor
func
)
{
bool
no_broadcast_flag
=
true
;
for
(
auto
*
in
:
ins
)
{
no_broadcast_flag
=
ins
[
0
]
->
dims
()
==
in
->
dims
();
}
if
(
no_broadcast_flag
)
{
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
InT
,
OutType
>
(
cuda_ctx
,
ins
,
outs
,
func
);
}
else
{
LaunchBroadcastElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
InT
>
(
cuda_ctx
,
ins
,
outs
,
axis
,
func
);
}
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
浏览文件 @
14949521
...
...
@@ -15,8 +15,7 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/fast_divmod.h"
#ifdef __HIPCC__
#define ELEMENTWISE_BLOCK_SIZE 256
...
...
@@ -29,11 +28,6 @@ namespace operators {
enum
ElementwiseType
{
kUnary
=
1
,
kBinary
=
2
};
template
<
typename
T
,
int
Size
>
struct
alignas
(
sizeof
(
T
)
*
Size
)
CudaAlignedVector
{
T
val
[
Size
];
};
template
<
typename
T
>
int
GetVectorizedSizeImpl
(
const
T
*
pointer
)
{
uint64_t
address
=
reinterpret_cast
<
uint64_t
>
(
pointer
);
...
...
@@ -181,7 +175,7 @@ __global__ void ScalarKernel(const InT *__restrict__ in0,
}
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutT
,
typename
Functor
>
void
LaunchElementwiseCudaKernel
(
void
Launch
SameDims
ElementwiseCudaKernel
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
vector
<
const
framework
::
Tensor
*>
&
ins
,
std
::
vector
<
framework
::
Tensor
*>
*
outs
,
Functor
func
)
{
...
...
paddle/fluid/
operators/elementwise/elementwise_op_broadcast_impl.cu
.h
→
paddle/fluid/
platform/fast_divmod
.h
浏览文件 @
14949521
...
...
@@ -14,13 +14,19 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include <cstdint>
#include "paddle/fluid/platform/hostdevice.h"
#define INT_BITS 32
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
int
Size
>
struct
alignas
(
sizeof
(
T
)
*
Size
)
CudaAlignedVector
{
T
val
[
Size
];
};
struct
FastDivMod
{
// 1st value represents the result of input number divides by recorded divisor
// 2nd value represents the result of input number modulo by recorded divisor
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录