提交 13b7d928 编写于 作者: Y Yibing Liu

improve doc in margin_rank_loss_op

上级 240adef1
......@@ -22,7 +22,7 @@ class MarginRankLossOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase *ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
// input check
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
......@@ -47,11 +47,11 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X1",
"(2-D tensor with shape [batch_size x 1]) In pairwise ranking, "
"X1 is the score for one item to be ranked.");
"(2-D tensor with shape [batch_size x 1]) The score for "
"one item X1 to be ranked, from pairwise ranking model.");
AddInput("X2",
"(2-D tensor with shape [batch_size x 1]) In pairwise ranking, "
"X2 is the score for another item to be ranked.");
"(2-D tensor with shape [batch_size x 1]) The score for "
"another item X2 to be ranked, from pairwise ranking model.");
AddInput("Label",
"(2-D tensor with shape [batch_size x 1]) "
"The label indicating X1 ranked higher than X2 or not, "
......@@ -63,19 +63,25 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
"to indicate whether each element of Output(Out) is activated.")
.AsIntermediate();
AddOutput("Out",
"(2-D tensor with shape [batch_size x 1])"
"(2-D tensor with shape [batch_size x 1]) "
"The output loss of MarginRankLoss operator.");
AddComment(R"DOC(
MarginRankLoss operator measures the loss given a pair of input {`X1`, `X2`}
and the `Label` with attribute `margin`, where `Label = +1` indicating X1 is
ranked higher than `X2`, otherwise `Label = -1`. The loss turns out
MarginRankLoss operator measures the loss given a pair of training sample
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
indicating X1 is ranked higher than `X2`, otherwise `Label = -1`. The loss
turns out
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin)
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin).
The attribute `margin` involved here helps make the predictions more robust.
Only when the difference between `X1` and `X2` is greater than `margin`, it is
possible for these two items contribute to the final loss.
Denote the item ranked higher as the positive sample, otherwise negative
sample. If the score of the two samples statisfies
positive sample - negative sample < margin,
the pair of samples will contribute to the loss, which will backpropogate and
train the ranking model to enlarge the difference of the two score.
For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
......@@ -89,7 +95,7 @@ class MarginRankLossGradOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase *ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
......
......@@ -35,7 +35,7 @@ struct Heaviside {
};
template <typename Place, typename T>
class MarginRankLossKernel : public framework::OpKernel {
class MarginRankLossKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* out_t = ctx.Output<framework::Tensor>("Out");
......@@ -63,7 +63,7 @@ class MarginRankLossKernel : public framework::OpKernel {
};
template <typename Place, typename T>
class MarginRankLossGradKernel : public framework::OpKernel {
class MarginRankLossGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* d_x1_t =
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册