Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
11f97c93
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
11f97c93
编写于
11月 28, 2016
作者:
L
liaogang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Change explicit code into literalinclude syntax
上级
d853a43f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
11 addition
and
74 deletion
+11
-74
doc_cn/demo/quick_start/index.rst
doc_cn/demo/quick_start/index.rst
+11
-74
未找到文件。
doc_cn/demo/quick_start/index.rst
浏览文件 @
11f97c93
...
...
@@ -49,7 +49,7 @@ PaddlePaddle快速入门教程
./preprocess.sh
数据预处理完成之后,通过配置类似于 ``dataprovider_*.py`` 的数据读取脚本和类似于 ``trainer_config.*.py`` 的训练模型脚本,PaddlePaddle将以设置参数的方式来设置
相应的数据读取脚本和训练模型脚本。接下来,我们将对这两个步骤给出了详细的解释,你也可以先跳过本文的解释环节,直接进入训练
环
节, 使用 ``sh train.sh`` 开始训练模型,
相应的数据读取脚本和训练模型脚本。接下来,我们将对这两个步骤给出了详细的解释,你也可以先跳过本文的解释环节,直接进入训练
模型章
节, 使用 ``sh train.sh`` 开始训练模型,
查看`train.sh`内容,通过 **自底向上法** (bottom-up approach)来帮助你理解PaddlePaddle的内部运行机制。
...
...
@@ -66,86 +66,23 @@ Python脚本读取数据
``dataprovider_bow.py`` 文件给出了完整例子:
.. code-block:: python
from paddle.trainer.PyDataProvider2 import *
# id of the word not in dictionary
UNK_IDX = 0
# initializer is called by the framework during initialization.
# It allows the user to describe the data types and setup the
# necessary data structure for later use.
# `settings` is an object. initializer need to properly fill settings.input_types.
# initializer can also store other data structures needed to be used at process().
# In this example, dictionary is stored in settings.
# `dictionay` and `kwargs` are arguments passed from trainer_config.lr.py
def initializer(settings, dictionary, **kwargs):
# Put the word dictionary into settings
settings.word_dict = dictionary
.. literalinclude:: ../../../demo/quick_start/dataprovider_bow.py
:language: python
:lines: 21-70
:linenos:
:emphasize-lines: 8,33
# setting.input_types specifies what the data types the data provider
# generates.
settings.input_types = [
# The first input is a sparse_binary_vector,
# which means each dimension of the vector is either 0 or 1. It is the
# bag-of-words (BOW) representation of the texts.
sparse_binary_vector(len(dictionary)),
# The second input is an integer. It represents the category id of the
# sample. 2 means there are two labels in the dataset.
# (1 for positive and 0 for negative)
integer_value(2)]
# Delaring a data provider. It has an initializer 'data_initialzer'.
# It will cache the generated data of the first pass in memory, so that
# during later pass, no on-the-fly data generation will be needed.
# `setting` is the same object used by initializer()
# `file_name` is the name of a file listed train_list or test_list file given
# to define_py_data_sources2(). See trainer_config.lr.py.
@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
# Open the input data file.
with open(file_name, 'r') as f:
# Read each line.
for line in f:
# Each line contains the label and text of the comment, separated by \t.
label, comment = line.strip().split('\t')
# Split the words into a list.
words = comment.split()
# convert the words into a list of ids by looking them up in word_dict.
word_vector = [settings.word_dict.get(w, UNK_IDX) for w in words]
# Return the features for the current comment. The first is a list
# of ids representing a 0-1 binary sparse vector of the text,
# the second is the integer id of the label.
yield word_vector, int(label)
配置中的数据加载定义
--------------------
在模型配置中通过 ``define_py_data_sources2`` 接口来加载数据:
.. code-block:: python
from paddle.trainer_config_helpers import *
file = "data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
for i, line in enumerate(f):
w = line.strip().split()[0]
word_dict[w] = i
# define the data sources for the model.
# We need to use different process for training and prediction.
# For training, the input data includes both word IDs and labels.
# For prediction, the input data only includs word Ids.
define_py_data_sources2(train_list='data/train.list',
test_list='data/test.list',
module="dataprovider_bow",
obj="process",
args={"dictionary": word_dict})
.. literalinclude:: ../../../demo/quick_start/trainer_config.emb.py
:language: python
:lines: 19-35
:linenos:
:emphasize-lines: 12
以下是对上述数据加载的解释:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录