Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0b911330
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b911330
编写于
7月 05, 2021
作者:
S
ShenLiang
提交者:
GitHub
7月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[HybridParallel] Add amp support for pipeline_parallel (#33951)
* add amp support for pp * add amp untest
上级
2ef6188b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
145 addition
and
7 deletion
+145
-7
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
...ptimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
+3
-3
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+13
-4
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_amp.py
...on/paddle/fluid/tests/unittests/hybrid_parallel_pp_amp.py
+126
-0
python/paddle/fluid/tests/unittests/test_parallel_dygraph_pipeline_parallel.py
...ests/unittests/test_parallel_dygraph_pipeline_parallel.py
+3
-0
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
浏览文件 @
0b911330
...
@@ -30,8 +30,8 @@ class HybridParallelGradScaler:
...
@@ -30,8 +30,8 @@ class HybridParallelGradScaler:
def
__init__
(
self
,
scaler
,
hcg
):
def
__init__
(
self
,
scaler
,
hcg
):
self
.
_scaler
=
scaler
self
.
_scaler
=
scaler
self
.
_hcg
=
hcg
self
.
_hcg
=
hcg
self
.
_
is_mp
=
(
self
.
_
use_dp_mode
=
(
self
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
TENSOR
_PARALLEL
)
self
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
DATA
_PARALLEL
)
def
scale
(
self
,
var
):
def
scale
(
self
,
var
):
return
self
.
_scaler
.
scale
(
var
)
return
self
.
_scaler
.
scale
(
var
)
...
@@ -67,7 +67,7 @@ class HybridParallelGradScaler:
...
@@ -67,7 +67,7 @@ class HybridParallelGradScaler:
core
.
ops
.
check_finite_and_unscale
(
param_grads
,
self
.
_scale
,
param_grads
,
core
.
ops
.
check_finite_and_unscale
(
param_grads
,
self
.
_scale
,
param_grads
,
self
.
_found_inf
)
self
.
_found_inf
)
# allreduce_max found_inf in check_group
# allreduce_max found_inf in check_group
if
self
.
_is_mp
:
if
not
self
.
_use_dp_mode
:
self
.
_found_inf
=
paddle
.
cast
(
self
.
_found_inf
,
dtype
=
"int32"
)
self
.
_found_inf
=
paddle
.
cast
(
self
.
_found_inf
,
dtype
=
"int32"
)
# TODO(shenliang03) Since the minimize call in the optimizer is
# TODO(shenliang03) Since the minimize call in the optimizer is
# after the gradscaler, check_finite needs to synchronize global
# after the gradscaler, check_finite needs to synchronize global
...
...
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
0b911330
...
@@ -106,11 +106,12 @@ class PipelineParallel(MetaParallelBase):
...
@@ -106,11 +106,12 @@ class PipelineParallel(MetaParallelBase):
group
=
self
.
pp_group
)
group
=
self
.
pp_group
)
return
loss
return
loss
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
):
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
'optimizer should be HybridParallelOptimizer subclass.'
)
'optimizer should be HybridParallelOptimizer subclass.'
)
self
.
optimizer
=
optimizer
self
.
optimizer
=
optimizer
self
.
lr_scheduler
=
lr_scheduler
self
.
lr_scheduler
=
lr_scheduler
self
.
scaler
=
scaler
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
'Please enable the generation of gradients.'
)
'Please enable the generation of gradients.'
)
...
@@ -143,8 +144,8 @@ class PipelineParallel(MetaParallelBase):
...
@@ -143,8 +144,8 @@ class PipelineParallel(MetaParallelBase):
self
.
_layers
.
allreduce_shared_weight_gradients
()
self
.
_layers
.
allreduce_shared_weight_gradients
()
# optimizer
# optimizer
self
.
_step
()
self
.
train_loss
=
self
.
_reduce_final_loss
()
self
.
train_loss
=
self
.
_reduce_final_loss
()
self
.
_step
()
return
self
.
train_loss
return
self
.
train_loss
def
_forward
(
self
,
cache_id
):
def
_forward
(
self
,
cache_id
):
...
@@ -192,7 +193,12 @@ class PipelineParallel(MetaParallelBase):
...
@@ -192,7 +193,12 @@ class PipelineParallel(MetaParallelBase):
def
_backward
(
self
,
cache_id
):
def
_backward
(
self
,
cache_id
):
if
self
.
is_last_stage
:
if
self
.
is_last_stage
:
paddle
.
autograd
.
backward
(
self
.
caches
[
'outputs'
][
cache_id
])
if
self
.
scaler
:
paddle
.
autograd
.
backward
(
self
.
scaler
.
scale
(
self
.
caches
[
'outputs'
][
cache_id
]))
else
:
paddle
.
autograd
.
backward
(
self
.
caches
[
'outputs'
][
cache_id
])
self
.
_send_gradients
(
cache_id
)
self
.
_send_gradients
(
cache_id
)
return
return
self
.
_recv_gradients
(
cache_id
)
self
.
_recv_gradients
(
cache_id
)
...
@@ -441,7 +447,10 @@ class PipelineParallel(MetaParallelBase):
...
@@ -441,7 +447,10 @@ class PipelineParallel(MetaParallelBase):
p2p
.
recv
(
d
,
self
.
next_stage_id
)
p2p
.
recv
(
d
,
self
.
next_stage_id
)
def
_step
(
self
):
def
_step
(
self
):
self
.
optimizer
.
step
()
if
self
.
scaler
:
self
.
scaler
.
minimize
(
self
.
optimizer
,
self
.
train_loss
)
else
:
self
.
optimizer
.
step
()
self
.
optimizer
.
clear_grad
()
self
.
optimizer
.
clear_grad
()
if
self
.
lr_scheduler
:
if
self
.
lr_scheduler
:
self
.
lr_scheduler
.
step
()
self
.
lr_scheduler
.
step
()
...
...
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_amp.py
0 → 100644
浏览文件 @
0b911330
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
paddle
import
numpy
as
np
import
random
import
paddle
import
paddle.distributed
as
dist
import
paddle.distributed.fleet
as
fleet
from
hybrid_parallel_pp_layer
import
AlexNetPipeDesc
,
AlexNet
def
set_random_seed
(
seed
,
dp_id
,
rank_id
):
"""Set random seed for reproducability."""
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
+
dp_id
)
paddle
.
seed
(
seed
+
dp_id
)
batch_size
=
4
micro_batch_size
=
2
class
TestDistPPTraning
(
unittest
.
TestCase
):
def
setUp
(
self
):
strategy
=
fleet
.
DistributedStrategy
()
self
.
model_parallel_size
=
1
self
.
data_parallel_size
=
1
self
.
pipeline_parallel_size
=
2
strategy
.
hybrid_configs
=
{
"dp_degree"
:
self
.
data_parallel_size
,
"mp_degree"
:
self
.
model_parallel_size
,
"pp_degree"
:
self
.
pipeline_parallel_size
,
}
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
batch_size
//
micro_batch_size
,
"micro_batch_size"
:
micro_batch_size
}
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
def
test_pp_model
(
self
):
hcg
=
fleet
.
get_hybrid_communicate_group
()
word_size
=
hcg
.
get_model_parallel_world_size
()
dp_id
=
hcg
.
get_data_parallel_rank
()
pp_id
=
hcg
.
get_stage_id
()
rank_id
=
dist
.
get_rank
()
set_random_seed
(
1024
,
dp_id
,
rank_id
)
#construct model a
model_a
=
AlexNet
(
10
)
scheduler_a
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
[
2
],
values
=
[
0.001
,
0.002
],
verbose
=
True
)
optimizer_a
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
scheduler_a
,
parameters
=
model_a
.
parameters
())
scaler_a
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
2
**
5
)
param_len
=
len
(
model_a
.
parameters
())
parameters
=
[]
for
param
in
model_a
.
parameters
():
parameters
.
append
(
param
.
numpy
())
# construct model b
model_b
=
AlexNetPipeDesc
(
num_stages
=
self
.
pipeline_parallel_size
)
scheduler_b
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
[
2
],
values
=
[
0.001
,
0.002
],
verbose
=
True
)
optimizer_b
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
scheduler_b
,
parameters
=
model_b
.
parameters
())
model_b
=
fleet
.
distributed_model
(
model_b
)
optimizer_b
=
fleet
.
distributed_optimizer
(
optimizer_b
)
scaler_b
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
2
**
5
)
scaler_b
=
fleet
.
distributed_scaler
(
scaler_b
)
for
idx
,
param
in
enumerate
(
model_b
.
parameters
()):
param
.
set_value
(
parameters
[
idx
+
pp_id
*
(
param_len
//
2
)])
# construct reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
,
drop_last
=
True
)
for
step_id
,
data
in
enumerate
(
train_reader
()):
x_data
=
np
.
array
([
x
[
0
]
for
x
in
data
]).
astype
(
'float32'
).
reshape
(
batch_size
,
1
,
28
,
28
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
batch_size
,
1
)
img
=
paddle
.
to_tensor
(
x_data
)
label
=
paddle
.
to_tensor
(
y_data
)
img
.
stop_gradient
=
True
label
.
stop_gradient
=
True
if
step_id
>=
5
:
return
True
with
paddle
.
amp
.
auto_cast
():
loss_a
=
model_a
(
img
,
label
)
scaler_a
.
scale
(
loss_a
).
backward
()
scaler_a
.
minimize
(
optimizer_a
,
loss_a
)
optimizer_a
.
clear_grad
()
scheduler_a
.
step
()
with
paddle
.
amp
.
auto_cast
():
loss_b
=
model_b
.
train_batch
(
[
img
,
label
],
optimizer_b
,
scheduler_b
,
scaler
=
scaler_b
)
print
(
"loss: "
,
loss_a
.
numpy
(),
loss_b
.
numpy
())
np
.
testing
.
assert_allclose
(
loss_a
.
numpy
(),
loss_b
.
numpy
(),
rtol
=
5e-5
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_dygraph_pipeline_parallel.py
浏览文件 @
0b911330
...
@@ -30,6 +30,9 @@ class TestHybridPipeParallel(TestMultipleGpus):
...
@@ -30,6 +30,9 @@ class TestHybridPipeParallel(TestMultipleGpus):
def
test_hybrid_parallel_pp_tuple_inputs
(
self
):
def
test_hybrid_parallel_pp_tuple_inputs
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_shared_weight.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_shared_weight.py'
)
def
test_pipeline_parallel
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_amp.py'
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录