Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0b0d3d03
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0b0d3d03
编写于
5月 15, 2017
作者:
C
Cao Ying
提交者:
GitHub
5月 15, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2134 from lcy-seso/add_param_attr_to_nce
add param_attr to nce_layer and enable multiple inputs.
上级
be8e3b57
7556ceff
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
117 addition
and
6 deletion
+117
-6
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+20
-4
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
..._helpers/tests/configs/protostr/test_cost_layers.protostr
+39
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers_with_weight.protostr
...ts/configs/protostr/test_cost_layers_with_weight.protostr
+49
-0
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py
.../trainer_config_helpers/tests/configs/test_cost_layers.py
+3
-1
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.py
...fig_helpers/tests/configs/test_cost_layers_with_weight.py
+6
-1
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
0b0d3d03
...
...
@@ -4921,12 +4921,14 @@ def crf_decoding_layer(input,
@
wrap_act_default
(
act
=
SigmoidActivation
())
@
wrap_bias_attr_default
(
has_bias
=
True
)
@
wrap_param_attr_default
()
@
wrap_name_default
()
@
layer_support
()
def
nce_layer
(
input
,
label
,
num_classes
,
num_classes
=
None
,
act
=
None
,
param_attr
=
None
,
weight
=
None
,
num_neg_samples
=
10
,
neg_distribution
=
None
,
...
...
@@ -4942,7 +4944,8 @@ def nce_layer(input,
.. code-block:: python
cost = nce_layer(input=layer1, label=layer2, weight=layer3,
cost = nce_layer(input=[layer1, layer2], label=layer2,
param_attr=[attr1, attr2], weight=layer3,
num_classes=3, neg_distribution=[0.1,0.3,0.6])
:param name: layer name
...
...
@@ -4957,6 +4960,8 @@ def nce_layer(input,
:type num_classes: int
:param act: Activation, default is Sigmoid.
:type act: BaseActivation
:param param_attr: The Parameter Attribute|list.
:type param_attr: ParameterAttribute
:param num_neg_samples: number of negative samples. Default is 10.
:type num_neg_samples: int
:param neg_distribution: The distribution for generating the random negative labels.
...
...
@@ -4972,9 +4977,20 @@ def nce_layer(input,
"""
if
isinstance
(
input
,
LayerOutput
):
input
=
[
input
]
assert
not
isinstance
(
param_attr
,
collections
.
Sequence
)
param_attr
=
[
param_attr
]
else
:
if
isinstance
(
param_attr
,
collections
.
Sequence
):
assert
len
(
input
)
==
len
(
param_attr
)
else
:
param_attr
=
[
copy
.
deepcopy
(
param_attr
)
for
_
in
range
(
len
(
input
))]
assert
isinstance
(
input
,
collections
.
Sequence
)
assert
isinstance
(
label
,
LayerOutput
)
assert
label
.
layer_type
==
LayerType
.
DATA
if
num_classes
is
None
:
num_classes
=
label
.
size
if
neg_distribution
is
not
None
:
assert
isinstance
(
neg_distribution
,
collections
.
Sequence
)
assert
len
(
neg_distribution
)
==
num_classes
...
...
@@ -4984,9 +5000,9 @@ def nce_layer(input,
ipts_for_layer
=
[]
parents
=
[]
for
each_input
in
input
:
for
each_input
,
attr
in
zip
(
input
,
param_attr
)
:
assert
isinstance
(
each_input
,
LayerOutput
)
ipts_for_layer
.
append
(
each_input
.
name
)
ipts_for_layer
.
append
(
Input
(
each_input
.
name
,
**
attr
.
attr
)
)
parents
.
append
(
each_input
)
ipts_for_layer
.
append
(
label
.
name
)
parents
.
append
(
label
)
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
浏览文件 @
0b0d3d03
...
...
@@ -215,6 +215,22 @@ layers {
}
coeff: 1.0
}
layers {
name: "__nce_layer_0__"
type: "nce"
size: 1
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___nce_layer_0__.w0"
}
inputs {
input_layer_name: "labels"
}
bias_parameter_name: "___nce_layer_0__.wbias"
num_classes: 5000
num_neg_samples: 10
}
parameters {
name: "___fc_layer_0__.w0"
size: 800
...
...
@@ -245,6 +261,26 @@ parameters {
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___nce_layer_0__.w0"
size: 20000
initial_mean: 0.0
initial_std: 0.0141421356237
dims: 5000
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___nce_layer_0__.wbias"
size: 5000
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 5000
initial_strategy: 0
initial_smart: false
}
input_layer_names: "input"
input_layer_names: "labels"
input_layer_names: "crf_label"
...
...
@@ -267,6 +303,7 @@ output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__sum_cost_0__"
output_layer_names: "__nce_layer_0__"
sub_models {
name: "root"
layer_names: "input"
...
...
@@ -292,6 +329,7 @@ sub_models {
layer_names: "__huber_cost_0__"
layer_names: "__multi_binary_label_cross_entropy_0__"
layer_names: "__sum_cost_0__"
layer_names: "__nce_layer_0__"
input_layer_names: "input"
input_layer_names: "labels"
input_layer_names: "crf_label"
...
...
@@ -314,6 +352,7 @@ sub_models {
output_layer_names: "__huber_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__sum_cost_0__"
output_layer_names: "__nce_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers_with_weight.protostr
浏览文件 @
0b0d3d03
...
...
@@ -60,6 +60,31 @@ layers {
}
coeff: 1.0
}
layers {
name: "multi_class_label"
type: "data"
size: 500
active_type: ""
}
layers {
name: "__nce_layer_0__"
type: "nce"
size: 1
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___nce_layer_0__.w0"
}
inputs {
input_layer_name: "multi_class_label"
}
inputs {
input_layer_name: "weight"
}
bias_parameter_name: "___nce_layer_0__.wbias"
num_classes: 500
num_neg_samples: 10
}
parameters {
name: "___fc_layer_0__.w0"
size: 3000
...
...
@@ -80,9 +105,30 @@ parameters {
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___nce_layer_0__.w0"
size: 5000
initial_mean: 0.0
initial_std: 0.04472135955
dims: 500
dims: 10
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___nce_layer_0__.wbias"
size: 500
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 500
initial_strategy: 0
initial_smart: false
}
input_layer_names: "input"
input_layer_names: "label"
input_layer_names: "weight"
input_layer_names: "multi_class_label"
output_layer_names: "__cost_0__"
output_layer_names: "__mse_cost_0__"
evaluators {
...
...
@@ -100,9 +146,12 @@ sub_models {
layer_names: "__fc_layer_0__"
layer_names: "__cost_0__"
layer_names: "__mse_cost_0__"
layer_names: "multi_class_label"
layer_names: "__nce_layer_0__"
input_layer_names: "input"
input_layer_names: "label"
input_layer_names: "weight"
input_layer_names: "multi_class_label"
output_layer_names: "__cost_0__"
output_layer_names: "__mse_cost_0__"
evaluator_names: "classification_error_evaluator"
...
...
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py
浏览文件 @
0b0d3d03
...
...
@@ -40,4 +40,6 @@ outputs(
name
=
'huber_label'
,
size
=
1
)),
multi_binary_label_cross_entropy
(
input
=
probs
,
label
=
xe_label
),
sum_cost
(
input
=
hidden
))
sum_cost
(
input
=
hidden
),
nce_layer
(
input
=
hidden
,
label
=
labels
))
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.py
浏览文件 @
0b0d3d03
...
...
@@ -11,4 +11,9 @@ outputs(
classification_cost
(
input
=
fc
,
label
=
lbl
,
weight
=
wt
),
mse_cost
(
input
=
fc
,
label
=
lbl
,
weight
=
wt
))
input
=
fc
,
label
=
lbl
,
weight
=
wt
),
nce_layer
(
input
=
fc
,
label
=
data_layer
(
name
=
'multi_class_label'
,
size
=
500
),
weight
=
wt
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录