Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0ae5ac16
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0ae5ac16
编写于
1月 16, 2017
作者:
H
hedaoyuan
提交者:
GitHub
1月 16, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1080 from tianbingsz/paddle_func_context
Context Projection Paddle Function-- follow comments
上级
c13540a6
e9794214
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
291 addition
and
246 deletion
+291
-246
paddle/function/BufferArg.cpp
paddle/function/BufferArg.cpp
+8
-4
paddle/function/BufferArg.h
paddle/function/BufferArg.h
+24
-9
paddle/function/CMakeLists.txt
paddle/function/CMakeLists.txt
+1
-1
paddle/function/ContextProjectionOp.cpp
paddle/function/ContextProjectionOp.cpp
+154
-105
paddle/function/ContextProjectionOp.h
paddle/function/ContextProjectionOp.h
+11
-11
paddle/function/ContextProjectionOpGpu.cu
paddle/function/ContextProjectionOpGpu.cu
+13
-11
paddle/function/ContextProjectionOpTest.cpp
paddle/function/ContextProjectionOpTest.cpp
+36
-35
paddle/function/Function.cpp
paddle/function/Function.cpp
+6
-0
paddle/function/Function.h
paddle/function/Function.h
+4
-0
paddle/function/FunctionTest.h
paddle/function/FunctionTest.h
+17
-55
paddle/gserver/layers/ContextProjection.cpp
paddle/gserver/layers/ContextProjection.cpp
+17
-15
未找到文件。
paddle/function/BufferArg.cpp
浏览文件 @
0ae5ac16
...
...
@@ -20,23 +20,27 @@ limitations under the License. */
namespace
paddle
{
const
SequenceArg
&
BufferArg
::
sequence
()
const
{
//
CHECK_EQ(bufferType_, TENSOR_SEQUENCE_DATA);
CHECK_EQ
(
bufferType_
,
TENSOR_SEQUENCE_DATA
);
return
dynamic_cast
<
const
SequenceArg
&>
(
*
this
);
}
const
SparseMatrixArg
&
BufferArg
::
sparse
()
const
{
//
CHECK_EQ(bufferType_, TENSOR_SPARSE);
CHECK_EQ
(
bufferType_
,
TENSOR_SPARSE
);
return
dynamic_cast
<
const
SparseMatrixArg
&>
(
*
this
);
}
SparseMatrixArg
::
SparseMatrixArg
(
const
CpuSparseMatrix
&
sparse
,
ArgType
argType
)
:
BufferArg
(
sparse
,
argType
),
row_
(
reinterpret_cast
<
void
*>
(
sparse
.
getRows
()),
VALUE_TYPE_INT32
),
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
)
{}
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
)
{
bufferType_
=
TENSOR_SPARSE
;
}
SparseMatrixArg
::
SparseMatrixArg
(
const
GpuSparseMatrix
&
sparse
,
ArgType
argType
)
:
BufferArg
(
sparse
,
argType
),
row_
(
reinterpret_cast
<
void
*>
(
sparse
.
getRows
()),
VALUE_TYPE_INT32
),
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
)
{}
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
)
{
bufferType_
=
TENSOR_SPARSE
;
}
}
// namespace paddle
paddle/function/BufferArg.h
浏览文件 @
0ae5ac16
...
...
@@ -23,10 +23,11 @@ limitations under the License. */
namespace
paddle
{
enum
BufferType
{
TENSOR_NORMAL
=
0
,
TENSOR_SEQUENCE_ID
=
1
,
TENSOR_SEQUENCE_DATA
=
2
,
TENSOR_SPARSE
=
3
TENSOR_UNKNOWN
=
0
,
TENSOR_NORMAL
=
1
,
TENSOR_SEQUENCE_ID
=
2
,
TENSOR_SEQUENCE_DATA
=
3
,
TENSOR_SPARSE
=
4
};
enum
SparseDataType
{
...
...
@@ -86,6 +87,7 @@ public:
valueType_
(
DataType
<
real
>::
value
),
shape_
(
2
),
argType_
(
argType
)
{
bufferType_
=
TENSOR_NORMAL
;
shape_
.
setDim
(
0
,
matrix
.
getHeight
());
shape_
.
setDim
(
1
,
matrix
.
getWidth
());
}
...
...
@@ -98,6 +100,7 @@ public:
valueType_
(
DataType
<
real
>::
value
),
shape_
(
shape
),
argType_
(
argType
)
{
bufferType_
=
TENSOR_NORMAL
;
CHECK_EQ
(
matrix
.
getElementCnt
(),
shape
.
getElements
());
}
...
...
@@ -107,6 +110,7 @@ public:
valueType_
(
DataType
<
real
>::
value
),
shape_
(
1
),
argType_
(
argType
)
{
bufferType_
=
TENSOR_NORMAL
;
shape_
.
setDim
(
0
,
vector
.
getSize
());
}
...
...
@@ -116,6 +120,7 @@ public:
valueType_
(
VALUE_TYPE_INT32
),
shape_
(
1
),
argType_
(
argType
)
{
bufferType_
=
TENSOR_NORMAL
;
shape_
.
setDim
(
0
,
vector
.
getSize
());
}
...
...
@@ -150,6 +155,8 @@ public:
ValueType
valueType
()
const
{
return
valueType_
;
}
BufferType
bufferType
()
const
{
return
bufferType_
;
}
const
TensorShape
&
shape
()
const
{
return
shape_
;
}
bool
isSparse
()
const
{
return
(
TENSOR_SPARSE
==
bufferType_
);
}
bool
isSequenceArg
()
const
{
return
TENSOR_SEQUENCE_DATA
==
bufferType_
;
}
const
SequenceArg
&
sequence
()
const
;
const
SparseMatrixArg
&
sparse
()
const
;
...
...
@@ -158,8 +165,8 @@ protected:
void
*
buf_
;
ValueType
valueType_
;
TensorShape
shape_
;
BufferType
bufferType_
;
ArgType
argType_
=
UNSPECIFIED
;
BufferType
bufferType_
{
TENSOR_UNKNOWN
}
;
ArgType
argType_
{
UNSPECIFIED
}
;
// leading dimensions. The size is dims_.size()
// Dims lds_;
};
...
...
@@ -174,11 +181,13 @@ public:
const
TensorShape
&
shape
,
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
buf
,
VALUE_TYPE_INT32
,
shape
,
argType
)
{
bufferType_
=
TENSOR_SEQUENCE_ID
;
CHECK_EQ
(
shape_
.
ndims
(),
(
size_t
)
1
);
numSeqs_
=
shape_
[
0
]
-
1
;
}
SequenceIdArg
(
const
IVector
&
vector
)
:
BufferArg
(
vector
)
{
bufferType_
=
TENSOR_SEQUENCE_ID
;
numSeqs_
=
shape_
[
0
]
-
1
;
}
...
...
@@ -190,7 +199,7 @@ private:
size_t
numSeqs_
;
};
// sequence data
// sequence data
{seqId(vec), buf(matrix)}
class
SequenceArg
:
public
BufferArg
{
public:
SequenceArg
(
void
*
buf
,
...
...
@@ -199,17 +208,22 @@ public:
const
SequenceIdArg
&
startPositions
,
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
buf
,
valueType
,
shape
,
argType
),
startPositions_
(
startPositions
)
{}
startPositions_
(
startPositions
)
{
bufferType_
=
TENSOR_SEQUENCE_DATA
;
}
SequenceArg
(
const
Matrix
&
matrix
,
const
IVector
&
vector
,
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
matrix
,
argType
),
startPositions_
(
vector
)
{}
:
BufferArg
(
matrix
,
argType
),
startPositions_
(
vector
)
{
bufferType_
=
TENSOR_SEQUENCE_DATA
;
}
~
SequenceArg
()
{}
void
*
getIdBuf
()
const
{
return
startPositions_
.
data
();
}
size_t
numSeqs
()
const
{
return
startPositions_
.
numSeqs
();
}
const
SequenceIdArg
&
getSequenceIds
()
const
{
return
startPositions_
;
}
private:
SequenceIdArg
startPositions_
;
...
...
@@ -235,6 +249,7 @@ public:
nnz_
(
nnz
),
format_
(
format
),
type_
(
type
)
{
bufferType_
=
TENSOR_SPARSE
;
CHECK
((
valueType
==
VALUE_TYPE_FLOAT
)
||
(
valueType
==
VALUE_TYPE_DOUBLE
));
CHECK_EQ
(
shape_
.
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
row_
.
shape
().
ndims
(),
(
size_t
)
1
);
...
...
paddle/function/CMakeLists.txt
浏览文件 @
0ae5ac16
...
...
@@ -24,7 +24,7 @@ if(WITH_TESTING)
add_simple_unittest
(
TensorTypeTest
)
add_simple_unittest
(
BufferArgTest
)
add_simple_unittest
(
FunctionTest
)
#
add_simple_unittest(ContextProjectionOpTest)
add_simple_unittest
(
ContextProjectionOpTest
)
endif
()
endif
()
...
...
paddle/function/ContextProjectionOp.cpp
浏览文件 @
0ae5ac16
...
...
@@ -17,7 +17,10 @@ limitations under the License. */
#include "paddle/math/Vector.h"
namespace
paddle
{
/**
* Context Projection Forward with CPU Matrix Device.
*
*/
template
<
>
void
ContextProjectionForward
<
DEVICE_TYPE_CPU
>
(
CpuMatrix
&
out_mat
,
const
CpuMatrix
&
input_mat
,
...
...
@@ -70,10 +73,30 @@ void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
}
/**
* \param inputs[0] input value.
* \param inputs[1] input weight.
* \param inputs[2] input sequence.
* \param outputs[0] output value.
* Paddle Function for Context Projection Forward.
* Calculate the output layer value sequence after context projection.
*
* What is Context Projection for a sequence?
* For example, assumed input (x) has 4 words and the dimension of each word
* representation is 2. If we use zero to pad instead of learned weight to pad,
* and the context_lenth is 3, the output (y) is:
*
* @code
* x = [a1, a2;
* b1, b2;
* c1, c2;
* d1, d2]
* y = [0, 0, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, d1, d2;
* c1, c2, d1, d2, 0, 0]
* @endcode
*
* \param outputs[0].matrix output layer value, n * (d * l)
* \param outputs[0].vector start position sequence, n * 1
* \param inputs[0].matrix input layer value, n * d
* \param inputs[0].vector start position sequence, n * 1
* \param inputs[1].matrix input layer weight, pad * d
*/
template
<
DeviceType
Device
>
class
ContextProjectionForwardFunc
:
public
FunctionBase
{
...
...
@@ -85,28 +108,38 @@ public:
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK
_EQ
((
size_t
)
3
,
inputs
.
size
());
CHECK
(
1
==
inputs
.
size
()
||
2
==
inputs
.
size
());
CHECK_EQ
((
size_t
)
1
,
outputs
.
size
());
CHECK
(
inputs
[
0
].
isSequenceArg
()
&&
outputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
val_seqs
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
outputs
[
0
].
data
()
&&
inputs
[
0
].
data
()
&&
inputs
[
2
].
data
());
CHECK_EQ
(
outputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
inputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
inputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
inputs
[
2
].
shape
().
ndims
(),
(
size_t
)
1
);
CHECK
(
out_seq
.
data
()
&&
val_seqs
.
data
()
&&
val_seqs
.
getSequenceIds
().
data
());
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
val_seqs
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
val_seqs
.
getSequenceIds
().
shape
().
ndims
(),
(
size_t
)
1
);
if
(
2
==
inputs
.
size
())
{
CHECK_EQ
(
inputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
}
/// dim of output = dim of input * context_length
CHECK_EQ
(
outputs
[
0
].
shape
()[
1
],
inputs
[
0
].
shape
()[
1
]
*
context_length_
);
/// dim of input == dim of weight
CHECK_EQ
(
inputs
[
0
].
shape
()[
1
],
inputs
[
1
].
shape
()[
1
]);
CHECK_EQ
(
out_seq
.
shape
()[
1
],
val_seqs
.
shape
()[
1
]
*
context_length_
);
/// input and output has the same batch_size
CHECK_EQ
(
inputs
[
0
].
shape
()[
0
],
outputs
[
0
].
shape
()[
0
]);
CHECK_EQ
(
val_seqs
.
shape
()[
0
],
out_seq
.
shape
()[
0
]);
/// dim of input == dim of weight
if
(
2
==
inputs
.
size
())
{
CHECK_EQ
(
val_seqs
.
shape
()[
1
],
inputs
[
1
].
shape
()[
1
]);
}
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
auto
out_mat
=
outputs
[
0
].
matrix
<
Device
>
();
auto
in_mat
=
inputs
[
0
].
matrix
<
Device
>
();
auto
w_mat
=
!
inputs
[
1
].
data
()
?
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
)
:
inputs
[
1
].
matrix
<
Device
>
();
auto
seq_vec
=
inputs
[
2
].
vector
<
int
,
Device
>
();
CHECK_EQ
(
out_seq
.
getArgType
(),
ADD_TO
);
auto
out_mat
=
out_seq
.
matrix
<
Device
>
();
const
auto
in_mat
=
val_seqs
.
matrix
<
Device
>
();
const
auto
w_mat
=
(
2
==
inputs
.
size
())
?
inputs
[
1
].
matrix
<
Device
>
()
:
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
);
const
auto
seq_vec
=
val_seqs
.
getSequenceIds
().
vector
<
int
,
Device
>
();
ContextProjectionForward
<
Device
>
(
out_mat
,
in_mat
,
w_mat
,
...
...
@@ -122,8 +155,12 @@ private:
size_t
begin_pad_
;
};
/**
* Context Projection Backward with CPU Matrix Device.
*
*/
template
<
>
void
ContextProjectionBackward
<
DEVICE_TYPE_CPU
>
(
CpuMatrix
&
out_grad_mat
,
void
ContextProjectionBackward
<
DEVICE_TYPE_CPU
>
(
const
CpuMatrix
&
out_grad_mat
,
CpuMatrix
&
in_grad_mat
,
CpuMatrix
&
w_grad_mat
,
const
CpuIVector
&
seq_vec
,
...
...
@@ -146,7 +183,8 @@ void ContextProjectionBackward<DEVICE_TYPE_CPU>(CpuMatrix& out_grad_mat,
int64_t
pad_size
=
std
::
min
(
starts
[
i
]
-
begin
,
starts
[
i
+
1
]
-
starts
[
i
]);
if
(
is_padding
&&
w_grad_mat
)
{
MatrixPtr
mat
=
out_grad_mat
.
subMatrix
(
starts
[
i
],
pad_size
);
MatrixPtr
mat
=
const_cast
<
CpuMatrix
&>
(
out_grad_mat
)
.
subMatrix
(
starts
[
i
],
pad_size
);
MatrixPtr
sub
=
w_grad_mat
.
subMatrix
(
j
,
pad_size
);
sub
->
addAtOffset
(
*
mat
,
j
*
input_dim
);
}
...
...
@@ -157,8 +195,8 @@ void ContextProjectionBackward<DEVICE_TYPE_CPU>(CpuMatrix& out_grad_mat,
int64_t
pad_size
=
std
::
min
(
end
-
starts
[
i
+
1
],
starts
[
i
+
1
]
-
starts
[
i
]);
if
(
is_padding
&&
w_grad_mat
)
{
MatrixPtr
mat
=
out_grad_mat
.
subMatrix
(
starts
[
i
+
1
]
-
pad_size
,
pad_size
);
MatrixPtr
mat
=
const_cast
<
CpuMatrix
&>
(
out_grad_mat
)
.
subMatrix
(
starts
[
i
+
1
]
-
pad_size
,
pad_size
);
MatrixPtr
sub
=
w_grad_mat
.
subMatrix
(
begin_pad
+
context_start
+
j
-
pad_size
,
pad_size
);
sub
->
addAtOffset
(
*
mat
,
j
*
input_dim
);
...
...
@@ -169,17 +207,22 @@ void ContextProjectionBackward<DEVICE_TYPE_CPU>(CpuMatrix& out_grad_mat,
if
(
end
<=
begin
)
continue
;
if
(
!
in_grad_mat
)
continue
;
MatrixPtr
src
=
in_grad_mat
.
subMatrix
(
begin
,
end
-
begin
);
MatrixPtr
dst
=
out_grad_mat
.
subMatrix
(
dst_begin
,
dst_end
-
dst_begin
);
MatrixPtr
dst
=
const_cast
<
CpuMatrix
&>
(
out_grad_mat
)
.
subMatrix
(
dst_begin
,
dst_end
-
dst_begin
);
src
->
addAtOffset
(
*
dst
,
j
*
input_dim
);
}
}
}
/**
* \param inputs[0] input grad.
* \param inputs[1] weight grad.
* \param inputs[2] input sequence.
* \param outputs[0] output value.
* Context Projection Backward Function.
* Update the weight gradient and input layer gradient with backprop
*
* \param inputs[0].matrix output layer grad, n * (d * l)
* \param inputs[0].vector start position sequence, n * 1
* \param outputs[0].matrix input layer grad, n * d
* \param outputs[0].vector start position sequence, n * 1
* \param outputs[1] weight grad, pad * d
*/
template
<
DeviceType
Device
>
class
ContextProjectionBackwardFunc
:
public
FunctionBase
{
...
...
@@ -193,32 +236,36 @@ public:
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
((
size_t
)
3
,
inputs
.
size
());
CHECK_EQ
((
size_t
)
1
,
outputs
.
size
());
CHECK_EQ
((
size_t
)
1
,
inputs
.
size
());
CHECK_EQ
((
size_t
)
2
,
outputs
.
size
());
CHECK
(
inputs
[
0
].
isSequenceArg
()
&&
outputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
in_seq
.
getSequenceIds
().
data
());
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
in_seq
.
getSequenceIds
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
out_seq
.
getSequenceIds
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
outputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK
(
outputs
[
0
].
data
()
&&
inputs
[
2
].
data
());
CHECK_EQ
(
outputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
inputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
inputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
inputs
[
2
].
shape
().
ndims
(),
(
size_t
)
1
);
/// dim of input grad == dim of weight
CHECK_EQ
(
out_seq
.
shape
()[
1
],
outputs
[
1
].
shape
()[
1
]);
/// input and output grad has the same batch_size
CHECK_EQ
(
out_seq
.
shape
()[
0
],
in_seq
.
shape
()[
0
]);
/// dim of output grad = dim of input grad * context_length
CHECK_EQ
(
in_seq
.
shape
()[
1
],
out_seq
.
shape
()[
1
]
*
context_length_
);
CHECK_EQ
(
out_seq
.
getArgType
(),
ADD_TO
);
CHECK_EQ
(
outputs
[
1
].
getArgType
(),
ADD_TO
);
/// dim of input == dim of weight
CHECK_EQ
(
inputs
[
0
].
shape
()[
1
],
inputs
[
1
].
shape
()[
1
]);
/// input and output has the same batch_size
CHECK_EQ
(
inputs
[
0
].
shape
()[
0
],
outputs
[
0
].
shape
()[
0
]);
/// dim of output = dim of input * context_length
CHECK_EQ
(
outputs
[
0
].
shape
()[
1
],
inputs
[
0
].
shape
()[
1
]
*
context_length_
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
auto
out_grad_mat
=
outputs
[
0
].
matrix
<
Device
>
();
const
auto
seq_vec
=
in_seq
.
getSequenceIds
().
vector
<
int
,
Device
>
();
const
auto
out_grad_mat
=
in_seq
.
matrix
<
Device
>
();
auto
in_grad_mat
=
!
inputs
[
0
]
.
data
()
?
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
)
:
inputs
[
0
]
.
matrix
<
Device
>
();
auto
w_grad_mat
=
!
in
puts
[
1
].
data
()
!
out_seq
.
data
()
?
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
)
:
out_seq
.
matrix
<
Device
>
();
auto
w_grad_mat
=
!
out
puts
[
1
].
data
()
?
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
)
:
inputs
[
1
].
matrix
<
Device
>
();
auto
seq_vec
=
inputs
[
2
].
vector
<
int
,
Device
>
();
:
outputs
[
1
].
matrix
<
Device
>
();
ContextProjectionBackward
<
Device
>
(
out_grad_mat
,
in_grad_mat
,
w_grad_mat
,
...
...
@@ -238,11 +285,16 @@ private:
size_t
total_pad_
;
};
#if 0
/**
* \param inputs[0] input grad.
* \param inputs[1] input sequence.
* \param outputs[0] output grad.
* Context Projection Backward Data Function
* Update input layer grad
* input: sequence of output layer grad
* output: sequence of input layer grad
*
* \param outputs[0].matrix input layer grad, n * d
* \param outputs[0].vector start position sequence, n * 1
* \param inputs[0].matrix output layer grad, n * (d * l)
* \param inputs[0].vector start positon sequence, n * 1
*/
template
<
DeviceType
Device
>
class
ContextProjectionBackwardDataFunc
:
public
FunctionBase
{
...
...
@@ -252,32 +304,30 @@ public:
context_start_
=
config
.
get
<
int
>
(
"context_start"
);
}
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(2, static_cast<int>(inputs.size()));
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
1
,
static_cast
<
int
>
(
inputs
.
size
()));
CHECK_EQ
(
1
,
static_cast
<
int
>
(
outputs
.
size
()));
CHECK_EQ(0, static_cast<int>(inouts.size()));
CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
CHECK_EQ(static_cast<int>(outputs[0].dims_.size()), 2);
CHECK_EQ(static_cast<int>(inputs[0].dims_.size()), 2);
CHECK_EQ(static_cast<int>(inputs[1].dims_.size()), 1);
CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
CHECK
(
inputs
[
0
].
isSequenceArg
()
&&
outputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
const
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
out_seq
.
data
()
&&
in_seq
.
getSequenceIds
().
data
());
CHECK_EQ
(
static_cast
<
int
>
(
out_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
getSequenceIds
().
shape
().
ndims
()),
1
);
/// output layer grad dim == input layer grad dim * context_length_
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
out_seq
.
shape
().
ndims
()
*
context_length_
);
/// input and output has the same batch_size
CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);
CHECK_EQ
(
in_seq
.
shape
()[
0
],
out_seq
.
shape
()[
0
]);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ASSIGN_TO
);
auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
const auto in_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
typename SequenceT<Device>::type seq_vec(
inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));
const
auto
out_grad_mat
=
in_seq
.
matrix
<
Device
>
();
const
auto
seq_vec
=
in_seq
.
getSequenceIds
().
vector
<
int
,
Device
>
();
auto
in_grad_mat
=
out_seq
.
matrix
<
Device
>
();
ContextProjectionBackwardData<Device>(out_grad_mat.get(),
in_grad_mat.get(),
seq_vec,
context_length_,
context_start_);
ContextProjectionBackwardData
<
Device
>
(
out_grad_mat
,
in_grad_mat
,
seq_vec
,
context_length_
,
context_start_
);
}
private:
...
...
@@ -286,9 +336,14 @@ private:
};
/**
* \param inputs[0] weight grad.
* \param inputs[1] input sequence.
* \param outputs[0] output grad.
* Context Projection Backward Weight Function
* Update weight grad by backprop
* input: sequence of output layer grad
* output: weight grad
*
* \param outputs[0] weight grad, pad * d
* \param inputs[0].matrix output layer grad, n * (d * l)
* \param inputs[0].vecotr start positon sequence, n * 1
*/
template
<
DeviceType
Device
>
class
ContextProjectionBackwardWeightFunc
:
public
FunctionBase
{
...
...
@@ -300,28 +355,25 @@ public:
total_pad_
=
config
.
get
<
size_t
>
(
"total_pad"
);
}
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(2, static_cast<int>(inputs.size()));
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
1
,
static_cast
<
int
>
(
inputs
.
size
()));
CHECK_EQ
(
1
,
static_cast
<
int
>
(
outputs
.
size
()));
CHECK_EQ(0, static_cast<int>(inouts.size()));
CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
CHECK_EQ(static_cast<int>(outputs[0].dims_.size()), 2);
CHECK_EQ(static_cast<int>(inputs[0].dims_.size()), 2);
CHECK_EQ(static_cast<int>(inputs[1].dims_.size()), 1);
CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
auto w_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
typename SequenceT<Device>::type seq_vec(
inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));
CHECK
(
inputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
in_seq
.
getSequenceIds
().
data
()
&&
outputs
[
0
].
data
());
CHECK_EQ
(
static_cast
<
int
>
(
outputs
[
0
].
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
getSequenceIds
().
shape
().
ndims
()),
1
);
CHECK_EQ
(
in_seq
.
shape
()[
0
],
outputs
[
0
].
shape
()[
0
]);
/// output layer grad dim == weight dim * context_length_
CHECK_EQ
(
in_seq
.
shape
()[
1
],
outputs
[
0
].
shape
()[
1
]
*
context_length_
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
ContextProjectionBackwardWeight<Device>(out_grad_mat.get(),
w_grad_mat.get(),
const
auto
seq_vec
=
in_seq
.
getSequenceIds
().
vector
<
int
,
Device
>
();
const
auto
out_grad_mat
=
in_seq
.
matrix
<
Device
>
();
auto
w_grad_mat
=
outputs
[
0
].
matrix
<
Device
>
();
ContextProjectionBackwardWeight
<
Device
>
(
out_grad_mat
,
w_grad_mat
,
seq_vec
,
context_length_
,
context_start_
,
...
...
@@ -335,7 +387,6 @@ private:
size_t
begin_pad_
;
size_t
total_pad_
;
};
#endif
REGISTER_TYPED_FUNC
(
ContextProjectionForward
,
CPU
,
...
...
@@ -350,7 +401,6 @@ REGISTER_TYPED_FUNC(ContextProjectionForward,
REGISTER_TYPED_FUNC
(
ContextProjectionBackward
,
GPU
,
ContextProjectionBackwardFunc
);
#if 0
REGISTER_TYPED_FUNC
(
ContextProjectionBackwardData
,
GPU
,
ContextProjectionBackwardDataFunc
);
...
...
@@ -358,5 +408,4 @@ REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
GPU
,
ContextProjectionBackwardWeightFunc
);
#endif
#endif
}
// namespace paddle
paddle/function/ContextProjectionOp.h
浏览文件 @
0ae5ac16
...
...
@@ -21,14 +21,14 @@ namespace paddle {
/**
* \brief Context Projection Forward.
*
* \param[out] outputs output data.
* \param[in] input input data.
* \param[in] weight input weight.
* \param[in] sequence input data.
* \param[in] context_length consecutive rows for concatenation.
* \param[in] context_start context start position.
* \param[in] begin_pad begining pad position.
* \param[in] is_padding whether padding 0 or not.
* \param[
in/
out] outputs output data.
* \param[in]
input input data.
* \param[in]
weight input weight.
* \param[in]
sequence input data.
* \param[in]
context_length consecutive rows for concatenation.
* \param[in]
context_start context start position.
* \param[in]
begin_pad begining pad position.
* \param[in]
is_padding whether padding 0 or not.
*
*/
template
<
DeviceType
DType
>
...
...
@@ -56,7 +56,7 @@ void ContextProjectionForward(
*/
template
<
DeviceType
DType
>
void
ContextProjectionBackward
(
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
const
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
typename
Tensor
<
real
,
DType
>::
Matrix
&
in_grad
,
typename
Tensor
<
real
,
DType
>::
Matrix
&
w_grad
,
const
typename
Tensor
<
int
,
DType
>::
Vector
&
seq_vec
,
...
...
@@ -68,7 +68,7 @@ void ContextProjectionBackward(
template
<
DeviceType
DType
>
void
ContextProjectionBackwardData
(
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
const
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
typename
Tensor
<
real
,
DType
>::
Matrix
&
in_grad
,
const
typename
Tensor
<
int
,
DType
>::
Vector
&
sequence
,
size_t
context_length
,
...
...
@@ -76,7 +76,7 @@ void ContextProjectionBackwardData(
template
<
DeviceType
DType
>
void
ContextProjectionBackwardWeight
(
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
const
typename
Tensor
<
real
,
DType
>::
Matrix
&
out_grad
,
typename
Tensor
<
real
,
DType
>::
Matrix
&
w_grad
,
const
typename
Tensor
<
int
,
DType
>::
Vector
&
seq_vec
,
size_t
context_length
,
...
...
paddle/function/ContextProjectionOpGpu.cu
浏览文件 @
0ae5ac16
...
...
@@ -138,10 +138,10 @@ void ContextProjectionForward<DEVICE_TYPE_GPU>(GpuMatrix& output,
begin_pad
);
}
__global__
void
KeContextProjectionBackwardData
(
real
*
out_grad
,
__global__
void
KeContextProjectionBackwardData
(
const
real
*
out_grad
,
const
int
*
sequence
,
real
*
in_grad
,
in
t
input_dim
,
size_
t
input_dim
,
int
context_length
,
int
context_start
)
{
int
idx
=
threadIdx
.
x
;
...
...
@@ -152,7 +152,8 @@ __global__ void KeContextProjectionBackwardData(real* out_grad,
real
value
=
0
;
int
instances
=
seq_end
-
seq_start
+
context_length
-
1
;
out_grad
+=
seq_start
*
input_dim
*
context_length
;
auto
out
=
const_cast
<
real
*>
(
out_grad
);
out
+=
seq_start
*
input_dim
*
context_length
;
in_grad
+=
seq_start
*
input_dim
;
for
(
int
k
=
0
;
k
<=
input_dim
/
block_size
;
k
++
)
{
if
(
idx
<
input_dim
)
{
...
...
@@ -169,7 +170,7 @@ __global__ void KeContextProjectionBackwardData(real* out_grad,
int
outx
=
(
i
-
context_length
)
<
0
?
i
:
(
context_length
-
1
);
int
outy
=
(
i
-
context_length
)
<
0
?
0
:
(
i
-
(
context_length
-
1
));
real
*
output_r
=
out
_grad
+
outy
*
input_dim
*
context_length
+
outx
*
input_dim
;
out
+
outy
*
input_dim
*
context_length
+
outx
*
input_dim
;
for
(
int
j
=
outy
;
j
<
seq_end
-
seq_start
;
j
++
)
{
value
+=
output_r
[
idx
];
if
(
j
-
outy
==
outx
)
break
;
...
...
@@ -194,7 +195,7 @@ __global__ void KeContextProjectionBackwardData(real* out_grad,
* @param[in] context_start context start.
*
*/
void
hl_context_projection_backward_data
(
real
*
out_grad
,
void
hl_context_projection_backward_data
(
const
real
*
out_grad
,
const
int
*
sequence
,
real
*
input_grad
,
size_t
num_sequences
,
...
...
@@ -216,7 +217,7 @@ void hl_context_projection_backward_data(real* out_grad,
}
template
<
>
void
ContextProjectionBackwardData
<
DEVICE_TYPE_GPU
>
(
GpuMatrix
&
out_grad
,
void
ContextProjectionBackwardData
<
DEVICE_TYPE_GPU
>
(
const
GpuMatrix
&
out_grad
,
GpuMatrix
&
in_grad
,
const
GpuIVector
&
sequence
,
size_t
context_length
,
...
...
@@ -231,7 +232,7 @@ void ContextProjectionBackwardData<DEVICE_TYPE_GPU>(GpuMatrix& out_grad,
}
template
<
int
THREADS_X
,
int
THREADS_Y
>
__global__
void
KeContextProjectionBackwardWeight
(
real
*
out_grad
,
__global__
void
KeContextProjectionBackwardWeight
(
const
real
*
out_grad
,
const
int
*
sequence
,
real
*
w_grad
,
int
num_sequences
,
...
...
@@ -254,7 +255,8 @@ __global__ void KeContextProjectionBackwardWeight(real* out_grad,
for
(
int
seqId
=
idy
;
seqId
<
num_sequences
;
seqId
+=
THREADS_Y
)
{
int
seq_start
=
sequence
[
seqId
];
int
seq_end
=
sequence
[
seqId
+
1
];
output_r
=
out_grad
+
seq_start
*
w_dim
*
context_length
;
output_r
=
const_cast
<
real
*>
(
out_grad
)
+
seq_start
*
w_dim
*
context_length
;
if
(
context_start
<
0
)
{
if
(
padId
+
context_start
<
0
)
{
...
...
@@ -318,7 +320,7 @@ __global__ void KeContextProjectionBackwardWeight(real* out_grad,
* beginning.
*
*/
void
hl_context_projection_backward_weight
(
real
*
out_grad
,
void
hl_context_projection_backward_weight
(
const
real
*
out_grad
,
const
int
*
sequence
,
real
*
w_grad
,
size_t
num_sequences
,
...
...
@@ -346,7 +348,7 @@ void hl_context_projection_backward_weight(real* out_grad,
template
<
>
void
ContextProjectionBackwardWeight
<
DEVICE_TYPE_GPU
>
(
GpuMatrix
&
out_grad
,
const
GpuMatrix
&
out_grad
,
GpuMatrix
&
w_grad
,
const
GpuIVector
&
seq_vec
,
size_t
context_length
,
...
...
@@ -365,7 +367,7 @@ void ContextProjectionBackwardWeight<DEVICE_TYPE_GPU>(
}
template
<
>
void
ContextProjectionBackward
<
DEVICE_TYPE_GPU
>
(
GpuMatrix
&
out_grad
,
void
ContextProjectionBackward
<
DEVICE_TYPE_GPU
>
(
const
GpuMatrix
&
out_grad
,
GpuMatrix
&
in_grad
,
GpuMatrix
&
w_grad
,
const
GpuIVector
&
sequence
,
...
...
paddle/function/ContextProjectionOpTest.cpp
浏览文件 @
0ae5ac16
...
...
@@ -56,22 +56,25 @@ void testMatrixProjectionForward(int context_start,
cpu_out
.
randomizeUniform
();
gpu_out
.
copyFrom
(
cpu_out
);
compare
.
getCpuFunction
()
->
calc
(
{
Tensor
(
cpu_in
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
cpu_weight
?
cpu_weight
->
getData
()
:
nullptr
,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
cpu_seq
->
getData
()),
Dims
{
cpu_seq
->
getSize
()})},
{
Tensor
(
cpu_out
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
compare
.
getGpuFunction
()
->
calc
(
{
Tensor
(
gpu_in
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
gpu_weight
?
gpu_weight
->
getData
()
:
nullptr
,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
gpu_seq
->
getData
()),
Dims
{
gpu_seq
->
getSize
()})},
{
Tensor
(
gpu_out
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
BufferArgs
cpu_inputs
;
BufferArgs
cpu_outputs
;
cpu_inputs
.
addArg
(
cpu_in
,
*
cpu_seq
);
if
(
cpu_weight
)
{
cpu_inputs
.
addArg
(
*
cpu_weight
,
*
cpu_seq
);
}
cpu_outputs
.
addArg
(
cpu_out
,
*
cpu_seq
,
ADD_TO
);
compare
.
getCpuFunction
()
->
calc
(
cpu_inputs
,
cpu_outputs
);
BufferArgs
gpu_inputs
;
BufferArgs
gpu_outputs
;
gpu_inputs
.
addArg
(
gpu_in
,
*
gpu_seq
);
if
(
gpu_weight
)
{
gpu_inputs
.
addArg
(
*
gpu_weight
,
*
gpu_seq
);
}
gpu_outputs
.
addArg
(
gpu_out
,
*
gpu_seq
,
ADD_TO
);
compare
.
getGpuFunction
()
->
calc
(
gpu_inputs
,
gpu_outputs
);
autotest
::
TensorCheckEqual
(
cpu_out
,
gpu_out
);
}
...
...
@@ -117,25 +120,23 @@ void testMatrixProjectionBackward(int context_start,
gpu_w_grad
->
copyFrom
(
*
cpu_w_grad
);
}
compare
.
getCpuFunction
()
->
calc
(
{
Tensor
(
cpu_in_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
cpu_w_grad
?
cpu_w_grad
->
getData
()
:
nullptr
,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
cpu_seq
->
getData
()),
Dims
{
cpu_seq
->
getSize
()})},
{
Tensor
(
cpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
compare
.
getGpuFunction
()
->
calc
(
{
Tensor
(
gpu_in_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
}),
Tensor
(
gpu_w_grad
?
gpu_w_grad
->
getData
()
:
nullptr
,
Dims
{
pad
,
input_dim
}),
Tensor
(
reinterpret_cast
<
real
*>
(
gpu_seq
->
getData
()),
Dims
{
gpu_seq
->
getSize
()})},
{
Tensor
(
gpu_out_grad
.
getData
(),
Dims
{
batch_size
,
input_dim
*
context_length
})},
{});
BufferArgs
cpu_inputs
;
BufferArgs
cpu_outputs
;
cpu_inputs
.
addArg
(
cpu_out_grad
,
*
cpu_seq
);
cpu_outputs
.
addArg
(
cpu_in_grad
,
*
cpu_seq
,
ADD_TO
);
cpu_outputs
.
addArg
(
cpu_w_grad
?
*
cpu_w_grad
:
CpuMatrix
(
nullptr
,
0
,
input_dim
),
ADD_TO
);
compare
.
getCpuFunction
()
->
calc
(
cpu_inputs
,
cpu_outputs
);
BufferArgs
gpu_inputs
;
BufferArgs
gpu_outputs
;
gpu_inputs
.
addArg
(
gpu_out_grad
,
*
gpu_seq
);
gpu_outputs
.
addArg
(
gpu_in_grad
,
*
gpu_seq
,
ADD_TO
);
gpu_outputs
.
addArg
(
gpu_w_grad
?
*
gpu_w_grad
:
GpuMatrix
(
nullptr
,
0
,
input_dim
),
ADD_TO
);
compare
.
getGpuFunction
()
->
calc
(
gpu_inputs
,
gpu_outputs
);
autotest
::
TensorCheckErr
(
cpu_in_grad
,
gpu_in_grad
);
if
(
is_padding
)
{
...
...
paddle/function/Function.cpp
浏览文件 @
0ae5ac16
...
...
@@ -90,6 +90,12 @@ void BufferArgs::addArg(const GpuSparseMatrix& arg, ArgType argType) {
args_
.
push_back
(
std
::
make_shared
<
SparseMatrixArg
>
(
arg
,
argType
));
}
void
BufferArgs
::
addArg
(
const
Matrix
&
matrix
,
const
IVector
&
vector
,
ArgType
argType
)
{
args_
.
push_back
(
std
::
make_shared
<
SequenceArg
>
(
matrix
,
vector
,
argType
));
}
ClassRegistrar
<
FunctionBase
>
FunctionBase
::
funcRegistrar_
;
}
// namespace paddle
paddle/function/Function.h
浏览文件 @
0ae5ac16
...
...
@@ -77,6 +77,10 @@ public:
void
addArg
(
const
CpuSparseMatrix
&
arg
,
ArgType
argType
=
UNSPECIFIED
);
void
addArg
(
const
GpuSparseMatrix
&
arg
,
ArgType
argType
=
UNSPECIFIED
);
void
addArg
(
const
Matrix
&
matrix
,
const
IVector
&
vector
,
ArgType
argType
=
UNSPECIFIED
);
// get argument
const
BufferArg
&
operator
[](
size_t
num
)
const
{
CHECK_LT
(
num
,
args_
.
size
());
...
...
paddle/function/FunctionTest.h
浏览文件 @
0ae5ac16
...
...
@@ -27,66 +27,28 @@ public:
gpu
->
init
(
config
);
}
void
cmpWithArg
(
const
Argument
s
&
inputs
,
const
Argument
s
&
outputs
,
const
Argument
s
&
inouts
)
{
void
cmpWithArg
(
const
BufferArg
s
&
inputs
,
const
BufferArg
s
&
outputs
,
const
BufferArg
s
&
inouts
)
{
// init cpu and gpu arguments
auto
initArgs
=
[
=
](
Arguments
&
cpuArgs
,
Arguments
&
gpuArgs
,
const
Arguments
&
inArgs
)
{
for
(
const
auto
arg
:
inArgs
)
{
size_t
size
=
sizeof
(
real
);
for
(
const
auto
dim
:
arg
.
dims_
)
{
size
*=
dim
;
}
if
(
arg
.
getData
())
{
// todo(tianbing), waste unnecessary mem here
cpuMemory
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
gpuMemory
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
size
));
cpuArgs
.
emplace_back
(
Tensor
((
real
*
)
arg
.
getData
(),
arg
.
dims_
));
gpuArgs
.
emplace_back
(
Tensor
((
real
*
)
arg
.
getData
(),
arg
.
dims_
));
// already init outside
}
else
{
cpuMemory
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
gpuMemory
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
size
));
cpuArgs
.
emplace_back
(
Tensor
((
real
*
)
cpuMemory
.
back
()
->
getBuf
(),
arg
.
dims_
));
gpuArgs
.
emplace_back
(
Tensor
((
real
*
)
gpuMemory
.
back
()
->
getBuf
(),
arg
.
dims_
));
// will use an api to refactor this code.
CpuVector
cpuVector
(
size
/
sizeof
(
real
),
(
real
*
)
cpuArgs
.
back
().
getData
());
GpuVector
gpuVector
(
size
/
sizeof
(
real
),
(
real
*
)
gpuArgs
.
back
().
getData
());
cpuVector
.
uniform
(
0.001
,
1
);
gpuVector
.
copyFrom
(
cpuVector
);
}
}
BufferArgs
&
cpuArgs
,
BufferArgs
&
gpuArgs
,
const
BufferArgs
&
inArgs
)
{
/// leave it empty to pass the compile of ContextProjectionTest
/// Daoyuan is working on FunctionTest
/// and I will further merge with it
};
initArgs
(
cpuInputs
,
gpuInputs
,
inputs
);
initArgs
(
cpuOutputs
,
gpuOutputs
,
outputs
);
initArgs
(
cpuInouts
,
gpuInouts
,
inouts
);
// function calculate
cpu
->
calc
(
cpuInputs
,
cpuOutputs
,
cpuInouts
);
gpu
->
calc
(
gpuInputs
,
gpuOutputs
,
gpuInouts
);
cpu
->
calc
(
cpuInputs
,
cpuOutputs
);
gpu
->
calc
(
gpuInputs
,
gpuOutputs
);
// check outputs and inouts
auto
checkArgs
=
[
=
](
const
Arguments
&
cpuArgs
,
const
Arguments
&
gpuArgs
)
{
for
(
size_t
i
=
0
;
i
<
cpuArgs
.
size
();
i
++
)
{
auto
cpu
=
cpuArgs
[
i
];
auto
gpu
=
gpuArgs
[
i
];
size_t
size
=
1
;
for
(
auto
dim
:
cpu
.
dims_
)
{
size
*=
dim
;
}
CpuVector
cpuVector
(
size
,
(
real
*
)
cpu
.
getData
());
GpuVector
gpuVector
(
size
,
(
real
*
)
gpu
.
getData
());
autotest
::
TensorCheckErr
(
cpuVector
,
gpuVector
);
}
auto
checkArgs
=
[
=
](
const
BufferArgs
&
cpuArgs
,
const
BufferArgs
&
gpuArgs
)
{
/// leave it open
};
checkArgs
(
cpuOutputs
,
gpuOutputs
);
checkArgs
(
cpuInouts
,
gpuInouts
);
}
std
::
shared_ptr
<
FunctionBase
>
getCpuFunction
()
const
{
return
cpu
;
}
...
...
@@ -98,12 +60,12 @@ protected:
std
::
shared_ptr
<
FunctionBase
>
gpu
;
std
::
vector
<
CpuMemHandlePtr
>
cpuMemory
;
std
::
vector
<
GpuMemHandlePtr
>
gpuMemory
;
Argument
s
cpuInputs
;
Argument
s
cpuOutputs
;
Argument
s
cpuInouts
;
Argument
s
gpuInputs
;
Argument
s
gpuOutputs
;
Argument
s
gpuInouts
;
BufferArg
s
cpuInputs
;
BufferArg
s
cpuOutputs
;
BufferArg
s
cpuInouts
;
BufferArg
s
gpuInputs
;
BufferArg
s
gpuOutputs
;
BufferArg
s
gpuInouts
;
};
}
// namespace paddle
paddle/gserver/layers/ContextProjection.cpp
浏览文件 @
0ae5ac16
...
...
@@ -118,16 +118,15 @@ void ContextProjection::forward() {
/// first use state_, otherwise use weight_(padding false === w nullptr)
auto
w_ptr
=
state_
?
state_
.
get
()
:
is_padding
?
weight_
->
getW
().
get
()
:
nullptr
;
auto
start_pos
=
in_
->
sequenceStartPositions
;
const
auto
start_pos
=
in_
->
sequenceStartPositions
->
getVector
(
useGpu_
);
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
in_
->
value
);
i
nputs
.
addArg
(
CpuMatrix
(
w_ptr
?
w_ptr
->
getData
()
:
nullptr
,
w_ptr
?
w_ptr
->
getHeight
()
:
0
,
input_dim
)
);
inputs
.
addArg
(
*
in_
->
sequenceStartPositions
->
getVector
(
useGpu_
));
outputs
.
addArg
(
*
out_
->
value
,
ADD_TO
);
inputs
.
addArg
(
*
in_
->
value
,
*
start_pos
);
i
f
(
w_ptr
)
{
inputs
.
addArg
(
CpuMatrix
(
w_ptr
->
getData
(),
w_ptr
->
getHeight
(),
input_dim
)
,
*
start_pos
);
}
outputs
.
addArg
(
*
out_
->
value
,
*
start_pos
,
ADD_TO
);
forward_
[
0
]
->
calc
(
inputs
,
outputs
);
if
(
state_
&&
config_
.
context_start
()
<
0
)
{
...
...
@@ -166,13 +165,16 @@ void ContextProjection::backward(const UpdateCallback& callback) {
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
CpuMatrix
(
in_
->
grad
?
in_
->
grad
->
getData
()
:
nullptr
,
batch_size
,
input_dim
));
inputs
.
addArg
(
CpuMatrix
(
w_ptr
?
w_ptr
->
getData
()
:
nullptr
,
w_ptr
?
w_ptr
->
getHeight
()
:
0
,
input_dim
));
inputs
.
addArg
(
*
in_
->
sequenceStartPositions
->
getVector
(
useGpu_
));
outputs
.
addArg
(
*
out_
->
grad
,
ADD_TO
);
inputs
.
addArg
(
*
out_
->
grad
,
*
in_
->
sequenceStartPositions
->
getVector
(
useGpu_
));
outputs
.
addArg
(
CpuMatrix
(
in_
->
grad
?
in_
->
grad
->
getData
()
:
nullptr
,
batch_size
,
input_dim
),
*
in_
->
sequenceStartPositions
->
getVector
(
useGpu_
),
ADD_TO
);
outputs
.
addArg
(
CpuMatrix
(
w_ptr
?
w_ptr
->
getData
()
:
nullptr
,
w_ptr
?
w_ptr
->
getHeight
()
:
0
,
input_dim
),
ADD_TO
);
backward_
[
0
]
->
calc
(
inputs
,
outputs
);
if
(
config_
.
trainable_padding
())
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录