未验证 提交 09a48965 编写于 作者: 提交者: GitHub

add test (#35100)

上级 ec422ea5
......@@ -562,7 +562,7 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
if (op_type == "slice") {
if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
!desc.HasAttr("ends")) {
!desc.HasAttr("ends") || !desc.HasAttr("decrease_axis")) {
return false;
} else {
std::vector<int> axes =
......@@ -571,9 +571,16 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
std::vector<int> ends =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
std::vector<int> decrease_axis =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
if (axes.size() != starts.size() || axes.size() != ends.size()) {
return false;
}
if (decrease_axis.size() > 0) {
VLOG(3) << "Invalid slice decrease_axis. decrease_axis.size() > 0"
"is not supported in TensorRT";
return false;
}
if (!with_dynamic_shape) {
for (size_t i = 0; i < axes.size(); i++) {
if (axes[i] == 0) {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
class TrtConvertSliceTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
for x in attrs[0]["decrease_axis"]:
if x < 0:
return False
for x in range(len(attrs[0]["axes"])):
start = 0
end = 0
if attrs[0]["starts"][x] < 0:
start = attrs[0]["starts"][x] + inputs['input_data'].shape[
attrs[0]["axes"][x]]
else:
start = attrs[0]["starts"][x]
if attrs[0]["ends"][x] < 0:
end = attrs[0]["ends"][x] + inputs['input_data'].shape[attrs[0][
"axes"][x]]
else:
end = attrs[0]["ends"][x]
start = max(0, start)
end = max(0, end)
if start >= end:
return False
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]]):
return np.ones([1, 3, 64, 64]).astype(np.float32)
for axes in [[0, 1], [1, 3], [2, 3]]:
for starts in [[0, 1], [-4, -3]]:
for ends in [[2, 2], [-1, -2], [5, 5]]:
for decrease_axis in [[], [1], [2], [-1], [-100]]:
for infer_flags in [[-1]]:
dics = [{
"axes": axes,
"starts": starts,
"ends": ends,
"decrease_axis": decrease_axis,
"infer_flags": infer_flags
}]
ops_config = [{
"op_type": "slice",
"op_inputs": {
"Input": ["input_data"]
},
"op_outputs": {
"Out": ["slice_output_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(data_gen=partial(
generate_input1, dics))
},
outputs=["slice_output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 32, 32]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
inputs = program_config.inputs
if len(attrs[0]["decrease_axis"]) != 0:
return 0, 3
if dynamic_shape:
for i in range(len(attrs[0]["starts"])):
if attrs[0]["starts"][i] < 0 or attrs[0]["ends"][i] < 0:
return 0, 3
if not dynamic_shape:
for x in attrs[0]["axes"]:
if x == 0:
return 0, 3
return 1, 2
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-4
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-4
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册