Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
08d233f9
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
08d233f9
编写于
10月 12, 2022
作者:
R
ronnywang
提交者:
GitHub
10月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry pick pr46536 (#46901)
cherry pick pr46536
上级
b051455f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
314 addition
and
37 deletion
+314
-37
python/paddle/fluid/tests/custom_runtime/CMakeLists.txt
python/paddle/fluid/tests/custom_runtime/CMakeLists.txt
+6
-4
python/paddle/fluid/tests/custom_runtime/test_collective_process_group_xccl.py
...ests/custom_runtime/test_collective_process_group_xccl.py
+20
-11
python/paddle/fluid/tests/custom_runtime/test_custom_cpu_plugin.py
...ddle/fluid/tests/custom_runtime/test_custom_cpu_plugin.py
+14
-8
python/paddle/fluid/tests/custom_runtime/test_custom_cpu_profiler_plugin.py
...d/tests/custom_runtime/test_custom_cpu_profiler_plugin.py
+14
-9
python/paddle/fluid/tests/custom_runtime/test_custom_cpu_to_static.py
...e/fluid/tests/custom_runtime/test_custom_cpu_to_static.py
+252
-0
python/paddle/fluid/tests/custom_runtime/test_fleet_launch_custom_device.sh
...d/tests/custom_runtime/test_fleet_launch_custom_device.sh
+8
-5
未找到文件。
python/paddle/fluid/tests/custom_runtime/CMakeLists.txt
浏览文件 @
08d233f9
if
(
WITH_CUSTOM_DEVICE AND NOT WITH_GPU
)
set
(
PLUGIN_URL https://github.com/PaddlePaddle/PaddleCustomDevice.git
)
set
(
PLUGIN_TAG
b9ae8452f31525d0524810461b17856838acd821
)
set
(
PLUGIN_TAG
0698428ddba21e6baecb690579f37c48896f7d56
)
file
(
GLOB TEST_OPS
...
...
@@ -8,10 +8,10 @@ if(WITH_CUSTOM_DEVICE AND NOT WITH_GPU)
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
list
(
REMOVE_ITEM TEST_OPS test_collective_process_group_xccl
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test
(
${
TEST_OP
}
SRCS
${
TEST_OP
}
.py ENVS PLUGIN_URL=
${
PLUGIN_URL
}
PLUGIN_TAG=
${
PLUGIN_TAG
}
)
py_test
(
${
TEST_OP
}
SRCS
${
TEST_OP
}
.py ENVS FLAGS_allocator_strategy=naive_best_fit
PLUGIN_URL=
${
PLUGIN_URL
}
PLUGIN_TAG=
${
PLUGIN_TAG
}
)
endforeach
()
bash_test_modules
(
...
...
@@ -19,6 +19,7 @@ if(WITH_CUSTOM_DEVICE AND NOT WITH_GPU)
START_BASH
test_fleet_launch_custom_device.sh
ENVS
FLAGS_allocator_strategy=naive_best_fit
PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
PLUGIN_URL=
${
PLUGIN_URL
}
PLUGIN_TAG=
${
PLUGIN_TAG
}
)
...
...
@@ -26,4 +27,5 @@ if(WITH_CUSTOM_DEVICE AND NOT WITH_GPU)
set_tests_properties
(
test_custom_cpu_plugin PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_custom_cpu_profiler_plugin PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_fleet_launch_custom_device PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_custom_cpu_to_static PROPERTIES TIMEOUT 120
)
endif
()
python/paddle/fluid/tests/custom_runtime/test_collective_process_group_xccl.py
浏览文件 @
08d233f9
...
...
@@ -12,14 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
os
import
sys
import
copy
import
subprocess
import
time
import
tempfile
def
start_local_trainers
(
cluster
,
...
...
@@ -28,7 +26,7 @@ def start_local_trainers(cluster,
training_script_args
,
eager_mode
=
True
,
log_dir
=
None
):
from
paddle.distributed.utils.launch_utils
import
find_free_ports
,
watch_local_trainers
,
get_cluster
,
TrainerProc
from
paddle.distributed.utils.launch_utils
import
find_free_ports
,
watch_local_trainers
,
get_cluster
,
TrainerProc
# noqa: F401
current_env
=
copy
.
copy
(
os
.
environ
.
copy
())
#paddle broadcast ncclUniqueId use socket, and
...
...
@@ -84,7 +82,7 @@ def start_local_trainers(cluster,
def
get_cluster_from_args
(
selected_gpus
):
from
paddle.distributed.utils.launch_utils
import
find_free_ports
,
watch_local_trainers
,
get_cluster
,
TrainerProc
from
paddle.distributed.utils.launch_utils
import
find_free_ports
,
watch_local_trainers
,
get_cluster
,
TrainerProc
# noqa: F401
cluster_node_ips
=
'127.0.0.1'
node_ip
=
'127.0.0.1'
...
...
@@ -108,7 +106,7 @@ def get_cluster_from_args(selected_gpus):
class
TestMultipleCustomCPU
(
unittest
.
TestCase
):
def
run_mnist_2custom_cpu
(
self
,
target_file_name
,
eager_mode
=
True
):
from
paddle.distributed.utils.launch_utils
import
find_free_ports
,
watch_local_trainers
,
get_cluster
,
TrainerProc
from
paddle.distributed.utils.launch_utils
import
find_free_ports
,
watch_local_trainers
,
get_cluster
,
TrainerProc
# noqa: F401
selected_devices
=
[
0
,
1
]
cluster
=
None
...
...
@@ -136,21 +134,32 @@ class TestProcessGroup(TestMultipleCustomCPU):
def
setUp
(
self
):
# compile so and set to current path
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
cmd
=
'rm -rf PaddleCustomDevice
\
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
cmd
=
'cd {}
\
&& git clone {}
\
&& cd PaddleCustomDevice/backends/custom_cpu
\
&& cd PaddleCustomDevice
\
&& git fetch origin
\
&& git checkout {} -b dev
\
&& cd backends/custom_cpu
\
&& mkdir build && cd build && cmake .. && make -j8'
.
format
(
os
.
getenv
(
'PLUGIN_URL'
),
os
.
getenv
(
'PLUGIN_TAG'
))
self
.
temp_dir
.
name
,
os
.
getenv
(
'PLUGIN_URL'
),
os
.
getenv
(
'PLUGIN_TAG'
))
os
.
system
(
cmd
)
# set environment for loading and registering compiled custom kernels
# only valid in current process
os
.
environ
[
'CUSTOM_DEVICE_ROOT'
]
=
os
.
path
.
join
(
cur_dir
,
'PaddleCustomDevice/backends/custom_cpu/build'
)
cur_dir
,
'{}/PaddleCustomDevice/backends/custom_cpu/build'
.
format
(
self
.
temp_dir
.
name
))
os
.
environ
[
'FLAGS_selected_custom_cpus'
]
=
'0,1'
os
.
environ
[
'CUSTOM_CPU_VISIBLE_DEVICES'
]
=
'0,1'
os
.
environ
[
'PADDLE_XCCL_BACKEND'
]
=
'custom_cpu'
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
test_process_group_xccl
(
self
):
from
paddle.distributed.utils.launch_utils
import
find_free_ports
,
watch_local_trainers
,
get_cluster
,
TrainerProc
from
paddle.distributed.utils.launch_utils
import
find_free_ports
,
watch_local_trainers
,
get_cluster
,
TrainerProc
# noqa: F401
self
.
run_mnist_2custom_cpu
(
'process_group_xccl.py'
)
...
...
python/paddle/fluid/tests/custom_runtime/test_custom_cpu_plugin.py
浏览文件 @
08d233f9
...
...
@@ -14,9 +14,9 @@
import
os
import
sys
import
site
import
unittest
import
numpy
as
np
import
tempfile
class
TestCustomCPUPlugin
(
unittest
.
TestCase
):
...
...
@@ -24,18 +24,27 @@ class TestCustomCPUPlugin(unittest.TestCase):
def
setUp
(
self
):
# compile so and set to current path
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
cmd
=
'rm -rf PaddleCustomDevice
\
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
cmd
=
'cd {}
\
&& git clone {}
\
&& cd PaddleCustomDevice/backends/custom_cpu
\
&& cd PaddleCustomDevice
\
&& git fetch origin
\
&& git checkout {} -b dev
\
&& cd backends/custom_cpu
\
&& mkdir build && cd build && cmake .. && make -j8'
.
format
(
os
.
getenv
(
'PLUGIN_URL'
),
os
.
getenv
(
'PLUGIN_TAG'
))
self
.
temp_dir
.
name
,
os
.
getenv
(
'PLUGIN_URL'
),
os
.
getenv
(
'PLUGIN_TAG'
))
os
.
system
(
cmd
)
# set environment for loading and registering compiled custom kernels
# only valid in current process
os
.
environ
[
'CUSTOM_DEVICE_ROOT'
]
=
os
.
path
.
join
(
cur_dir
,
'PaddleCustomDevice/backends/custom_cpu/build'
)
cur_dir
,
'{}/PaddleCustomDevice/backends/custom_cpu/build'
.
format
(
self
.
temp_dir
.
name
))
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
del
os
.
environ
[
'CUSTOM_DEVICE_ROOT'
]
def
test_custom_device
(
self
):
import
paddle
...
...
@@ -183,9 +192,6 @@ class TestCustomCPUPlugin(unittest.TestCase):
k_t
=
paddle
.
to_tensor
([
3
],
dtype
=
"int32"
)
value_1
,
indices_1
=
paddle
.
topk
(
data_1
,
k
=
k_t
)
def
tearDown
(
self
):
del
os
.
environ
[
'CUSTOM_DEVICE_ROOT'
]
if
__name__
==
'__main__'
:
if
os
.
name
==
'nt'
or
sys
.
platform
.
startswith
(
'darwin'
):
...
...
python/paddle/fluid/tests/custom_runtime/test_custom_cpu_profiler_plugin.py
浏览文件 @
08d233f9
...
...
@@ -14,9 +14,8 @@
import
os
import
sys
import
site
import
unittest
import
numpy
as
np
import
tempfile
class
TestCustomCPUProfilerPlugin
(
unittest
.
TestCase
):
...
...
@@ -24,18 +23,27 @@ class TestCustomCPUProfilerPlugin(unittest.TestCase):
def
setUp
(
self
):
# compile so and set to current path
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
cmd
=
'rm -rf PaddleCustomDevice
\
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
cmd
=
'cd {}
\
&& git clone {}
\
&& cd PaddleCustomDevice/backends/custom_cpu
\
&& cd PaddleCustomDevice
\
&& git fetch origin
\
&& git checkout {} -b dev
\
&& cd backends/custom_cpu
\
&& mkdir build && cd build && cmake .. && make -j8'
.
format
(
os
.
getenv
(
'PLUGIN_URL'
),
os
.
getenv
(
'PLUGIN_TAG'
))
self
.
temp_dir
.
name
,
os
.
getenv
(
'PLUGIN_URL'
),
os
.
getenv
(
'PLUGIN_TAG'
))
os
.
system
(
cmd
)
# set environment for loading and registering compiled custom kernels
# only valid in current process
os
.
environ
[
'CUSTOM_DEVICE_ROOT'
]
=
os
.
path
.
join
(
cur_dir
,
'PaddleCustomDevice/backends/custom_cpu/build'
)
cur_dir
,
'{}/PaddleCustomDevice/backends/custom_cpu/build'
.
format
(
self
.
temp_dir
.
name
))
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
del
os
.
environ
[
'CUSTOM_DEVICE_ROOT'
]
def
test_custom_device
(
self
):
import
paddle
...
...
@@ -59,9 +67,6 @@ class TestCustomCPUProfilerPlugin(unittest.TestCase):
p
.
stop
()
p
.
summary
()
def
tearDown
(
self
):
del
os
.
environ
[
'CUSTOM_DEVICE_ROOT'
]
if
__name__
==
'__main__'
:
if
os
.
name
==
'nt'
or
sys
.
platform
.
startswith
(
'darwin'
):
...
...
python/paddle/fluid/tests/custom_runtime/test_custom_cpu_to_static.py
0 → 100644
浏览文件 @
08d233f9
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
time
import
unittest
import
numpy
as
np
import
tempfile
EPOCH_NUM
=
1
BATCH_SIZE
=
1024
def
train_func_base
(
epoch_id
,
train_loader
,
model
,
cost
,
optimizer
):
total_step
=
len
(
train_loader
)
epoch_start
=
time
.
time
()
for
batch_id
,
(
images
,
labels
)
in
enumerate
(
train_loader
()):
# forward
outputs
=
model
(
images
)
loss
=
cost
(
outputs
,
labels
)
# backward and optimize
loss
.
backward
()
optimizer
.
step
()
optimizer
.
clear_grad
()
print
(
"Epoch [{}/{}], Step [{}/{}], Loss: {}"
.
format
(
epoch_id
+
1
,
EPOCH_NUM
,
batch_id
+
1
,
total_step
,
loss
.
numpy
()))
epoch_end
=
time
.
time
()
print
(
f
"Epoch ID:
{
epoch_id
+
1
}
, FP32 train epoch time:
{
(
epoch_end
-
epoch_start
)
*
1000
}
ms"
)
def
train_func_ampo1
(
epoch_id
,
train_loader
,
model
,
cost
,
optimizer
,
scaler
):
import
paddle
total_step
=
len
(
train_loader
)
epoch_start
=
time
.
time
()
for
batch_id
,
(
images
,
labels
)
in
enumerate
(
train_loader
()):
# forward
with
paddle
.
amp
.
auto_cast
(
custom_black_list
=
{
"flatten_contiguous_range"
,
"greater_than"
},
level
=
'O1'
):
outputs
=
model
(
images
)
loss
=
cost
(
outputs
,
labels
)
# backward and optimize
scaled
=
scaler
.
scale
(
loss
)
scaled
.
backward
()
scaler
.
minimize
(
optimizer
,
scaled
)
optimizer
.
clear_grad
()
print
(
"Epoch [{}/{}], Step [{}/{}], Loss: {}"
.
format
(
epoch_id
+
1
,
EPOCH_NUM
,
batch_id
+
1
,
total_step
,
loss
.
numpy
()))
epoch_end
=
time
.
time
()
print
(
f
"Epoch ID:
{
epoch_id
+
1
}
, AMPO1 train epoch time:
{
(
epoch_end
-
epoch_start
)
*
1000
}
ms"
)
def
test_func
(
epoch_id
,
test_loader
,
model
,
cost
):
import
paddle
# evaluation every epoch finish
model
.
eval
()
avg_acc
=
[[],
[]]
for
batch_id
,
(
images
,
labels
)
in
enumerate
(
test_loader
()):
# forward
outputs
=
model
(
images
)
loss
=
cost
(
outputs
,
labels
)
# accuracy
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
outputs
,
label
=
labels
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
outputs
,
label
=
labels
,
k
=
5
)
avg_acc
[
0
].
append
(
acc_top1
.
numpy
())
avg_acc
[
1
].
append
(
acc_top5
.
numpy
())
model
.
train
()
print
(
f
"Epoch ID:
{
epoch_id
+
1
}
, Top1 accurary:
{
np
.
array
(
avg_acc
[
0
]).
mean
()
}
, Top5 accurary:
{
np
.
array
(
avg_acc
[
1
]).
mean
()
}
"
)
class
TestCustomCPUPlugin
(
unittest
.
TestCase
):
def
setUp
(
self
):
# compile so and set to current path
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
cmd
=
'cd {}
\
&& git clone {}
\
&& cd PaddleCustomDevice
\
&& git fetch origin
\
&& git checkout {} -b dev
\
&& cd backends/custom_cpu
\
&& mkdir build && cd build && cmake .. && make -j8'
.
format
(
self
.
temp_dir
.
name
,
os
.
getenv
(
'PLUGIN_URL'
),
os
.
getenv
(
'PLUGIN_TAG'
))
os
.
system
(
cmd
)
# set environment for loading and registering compiled custom kernels
# only valid in current process
os
.
environ
[
'CUSTOM_DEVICE_ROOT'
]
=
os
.
path
.
join
(
cur_dir
,
'{}/PaddleCustomDevice/backends/custom_cpu/build'
.
format
(
self
.
temp_dir
.
name
))
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
test_custom_cpu_plugin
(
self
):
self
.
_test_to_static
()
self
.
_test_amp_o1
()
def
_test_to_static
(
self
):
import
paddle
class
LeNet5
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
LeNet5
,
self
).
__init__
()
self
.
fc
=
paddle
.
nn
.
Linear
(
in_features
=
1024
,
out_features
=
10
)
self
.
relu
=
paddle
.
nn
.
ReLU
()
self
.
fc1
=
paddle
.
nn
.
Linear
(
in_features
=
10
,
out_features
=
10
)
def
forward
(
self
,
x
):
out
=
paddle
.
flatten
(
x
,
1
)
out
=
self
.
fc
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
fc1
(
out
)
return
out
# set device
paddle
.
set_device
(
'custom_cpu'
)
# model
model
=
LeNet5
()
# cost and optimizer
cost
=
paddle
.
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
model
.
parameters
())
# convert to static model
build_strategy
=
paddle
.
static
.
BuildStrategy
()
mnist
=
paddle
.
jit
.
to_static
(
model
,
build_strategy
=
build_strategy
)
# data loader
transform
=
paddle
.
vision
.
transforms
.
Compose
([
paddle
.
vision
.
transforms
.
Resize
((
32
,
32
)),
paddle
.
vision
.
transforms
.
ToTensor
(),
paddle
.
vision
.
transforms
.
Normalize
(
mean
=
(
0.1307
,
),
std
=
(
0.3081
,
))
])
train_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'train'
,
transform
=
transform
,
download
=
True
)
test_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'test'
,
transform
=
transform
,
download
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
(
train_dataset
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
2
)
test_loader
=
paddle
.
io
.
DataLoader
(
test_dataset
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
2
)
# train and eval
for
epoch_id
in
range
(
EPOCH_NUM
):
train_func_base
(
epoch_id
,
train_loader
,
model
,
cost
,
optimizer
)
test_func
(
epoch_id
,
test_loader
,
model
,
cost
)
def
_test_amp_o1
(
self
):
import
paddle
class
LeNet5
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
LeNet5
,
self
).
__init__
()
self
.
fc
=
paddle
.
nn
.
Linear
(
in_features
=
1024
,
out_features
=
10
)
self
.
relu
=
paddle
.
nn
.
ReLU
()
self
.
fc1
=
paddle
.
nn
.
Linear
(
in_features
=
10
,
out_features
=
10
)
def
forward
(
self
,
x
):
out
=
paddle
.
flatten
(
x
,
1
)
out
=
self
.
fc
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
fc1
(
out
)
return
out
# set device
paddle
.
set_device
(
'custom_cpu'
)
# model
model
=
LeNet5
()
# cost and optimizer
cost
=
paddle
.
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
model
.
parameters
())
# convert to static model
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
1024
)
model
,
optimizer
=
paddle
.
amp
.
decorate
(
models
=
model
,
optimizers
=
optimizer
,
level
=
'O1'
)
# data loader
transform
=
paddle
.
vision
.
transforms
.
Compose
([
paddle
.
vision
.
transforms
.
Resize
((
32
,
32
)),
paddle
.
vision
.
transforms
.
ToTensor
(),
paddle
.
vision
.
transforms
.
Normalize
(
mean
=
(
0.1307
,
),
std
=
(
0.3081
,
))
])
train_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'train'
,
transform
=
transform
,
download
=
True
)
test_dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'test'
,
transform
=
transform
,
download
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
(
train_dataset
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
2
)
test_loader
=
paddle
.
io
.
DataLoader
(
test_dataset
,
batch_size
=
BATCH_SIZE
,
shuffle
=
True
,
drop_last
=
True
,
num_workers
=
2
)
# train and eval
for
epoch_id
in
range
(
EPOCH_NUM
):
train_func_ampo1
(
epoch_id
,
train_loader
,
model
,
cost
,
optimizer
,
scaler
)
test_func
(
epoch_id
,
test_loader
,
model
,
cost
)
if
__name__
==
'__main__'
:
if
os
.
name
==
'nt'
or
sys
.
platform
.
startswith
(
'darwin'
):
# only support Linux now
exit
()
unittest
.
main
()
python/paddle/fluid/tests/custom_runtime/test_fleet_launch_custom_device.sh
浏览文件 @
08d233f9
...
...
@@ -16,17 +16,20 @@
set
-e
rm
-rf
PaddleCustomDevice
&&
\
git clone
${
PLUGIN_URL
}
\
&&
pushd
PaddleCustomDevice/backends/custom_cpu
\
temp_dir
=
$(
mktemp
--directory
)
pushd
${
temp_dir
}
\
&&
git clone
${
PLUGIN_URL
}
\
&&
pushd
PaddleCustomDevice/
\
&&
git fetch origin
\
&&
git checkout
${
PLUGIN_TAG
}
-b
dev
\
&&
mkdir
build
&&
pushd
build
&&
cmake ..
&&
make
-j8
&&
popd
&&
popd
&&
pushd
backends/custom_cpu
\
&&
mkdir
build
&&
pushd
build
&&
cmake ..
&&
make
-j8
&&
popd
&&
popd
&&
popd
&&
popd
echo
"begin test use custom_cpu"
export
FLAGS_selected_custom_cpus
=
0,1
export
CUSTOM_CPU_VISIBLE_DEVICES
=
0,1
export
CUSTOM_DEVICE_ROOT
=
PaddleCustomDevice/backends/custom_cpu/build
export
CUSTOM_DEVICE_ROOT
=
${
temp_dir
}
/
PaddleCustomDevice/backends/custom_cpu/build
distributed_args
=
"--devices=0,1"
python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
custom_device_multi_process_collective.py fleetlaunch_custom_cpu
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录