Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
087d8e7f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
087d8e7f
编写于
2月 26, 2018
作者:
C
chengduo
提交者:
GitHub
2月 26, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8551 from chengduoZH/fixbug/conv2d_python
Fix the bug of conv2d
上级
fe7c1814
5d301428
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
95 addition
and
50 deletion
+95
-50
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+36
-50
python/paddle/fluid/layers/utils.py
python/paddle/fluid/layers/utils.py
+59
-0
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
087d8e7f
...
...
@@ -21,6 +21,7 @@ from ..framework import Variable
from
..param_attr
import
ParamAttr
from
layer_function_generator
import
autodoc
from
tensor
import
concat
import
utils
__all__
=
[
'fc'
,
...
...
@@ -1138,8 +1139,8 @@ def sequence_conv(input,
def
conv2d
(
input
,
num_filters
,
filter_size
,
stride
=
None
,
padding
=
None
,
stride
=
1
,
padding
=
0
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
...
...
@@ -1252,12 +1253,10 @@ def conv2d(input,
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
if
isinstance
(
filter_size
,
int
):
filter_size
=
[
filter_size
,
filter_size
]
if
isinstance
(
stride
,
int
):
stride
=
[
stride
,
stride
]
if
isinstance
(
padding
,
int
):
padding
=
[
padding
,
padding
]
filter_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
'filter_size'
)
stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
padding
=
utils
.
convert_to_list
(
padding
,
2
,
'padding'
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
...
...
@@ -1432,10 +1431,10 @@ def sequence_last_step(input):
def
pool2d
(
input
,
pool_size
,
pool_type
,
pool_stride
=
None
,
pool_padding
=
None
,
pool_size
=-
1
,
pool_type
=
"max"
,
pool_stride
=
1
,
pool_padding
=
0
,
global_pooling
=
False
,
use_cudnn
=
True
,
name
=
None
):
...
...
@@ -1443,20 +1442,20 @@ def pool2d(input,
This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters.
"""
if
pool_padding
is
None
:
pool_padding
=
[
0
,
0
]
if
pool_stride
is
None
:
pool_stride
=
[
1
,
1
]
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'."
,
str
(
pool_type
))
if
isinstance
(
pool_size
,
int
):
pool_size
=
[
pool_size
,
pool_size
]
if
isinstance
(
pool_stride
,
int
):
pool_stride
=
[
pool_stride
,
pool_stride
]
if
isinstance
(
pool_padding
,
int
):
pool_padding
=
[
pool_padding
,
pool_padding
]
if
global_pooling
is
False
and
pool_size
==
-
1
:
raise
ValueError
(
"When the global_pooling is False, pool_size must be passed "
"and be a valid value. Received pool_size: "
+
str
(
pool_size
))
pool_size
=
utils
.
convert_to_list
(
pool_size
,
2
,
'pool_size'
)
pool_padding
=
utils
.
convert_to_list
(
pool_padding
,
2
,
'pool_padding'
)
pool_stride
=
utils
.
convert_to_list
(
pool_stride
,
2
,
'pool_stride'
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
...
...
@@ -1685,9 +1684,9 @@ def conv2d_transpose(input,
num_filters
,
output_size
=
None
,
filter_size
=
None
,
padding
=
None
,
stride
=
None
,
dilation
=
None
,
padding
=
0
,
stride
=
1
,
dilation
=
1
,
param_attr
=
None
,
use_cudnn
=
True
,
name
=
None
):
...
...
@@ -1783,26 +1782,12 @@ def conv2d_transpose(input,
raise
TypeError
(
"Input of conv2d_transpose must be Variable"
)
input_channel
=
input
.
shape
[
1
]
op_attr
=
dict
()
if
isinstance
(
padding
,
int
):
op_attr
[
'paddings'
]
=
[
padding
,
padding
]
elif
padding
is
not
None
:
op_attr
[
'paddings'
]
=
padding
if
isinstance
(
stride
,
int
):
op_attr
[
'strides'
]
=
[
stride
,
stride
]
elif
stride
is
not
None
:
op_attr
[
'strides'
]
=
stride
if
isinstance
(
dilation
,
int
):
op_attr
[
'dilations'
]
=
[
dilation
,
dilation
]
elif
dilation
is
not
None
:
op_attr
[
'dilations'
]
=
dilation
padding
=
utils
.
convert_to_list
(
padding
,
2
,
'padding'
)
stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
dilation
=
utils
.
convert_to_list
(
dilation
,
2
,
'dilation'
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
op_attr
[
'use_cudnn'
]
=
use_cudnn
if
filter_size
is
None
:
if
output_size
is
None
:
...
...
@@ -1810,10 +1795,6 @@ def conv2d_transpose(input,
if
isinstance
(
output_size
,
int
):
output_size
=
[
output_size
,
output_size
]
padding
=
op_attr
.
get
(
'paddings'
,
[
0
,
0
])
stride
=
op_attr
.
get
(
'strides'
,
[
1
,
1
])
dilation
=
op_attr
.
get
(
'dilations'
,
[
1
,
1
])
h_in
=
input
.
shape
[
2
]
w_in
=
input
.
shape
[
3
]
...
...
@@ -1822,9 +1803,9 @@ def conv2d_transpose(input,
filter_size_w
=
(
output_size
[
1
]
-
(
w_in
-
1
)
*
stride
[
1
]
+
2
*
padding
[
1
]
-
1
)
/
dilation
[
1
]
+
1
filter_size
=
[
filter_size_h
,
filter_size_w
]
elif
isinstance
(
filter_size
,
int
):
filter_size
=
[
filter_size
,
filter_size
]
else
:
filter_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
'conv2d_transpose.filter_size'
)
filter_shape
=
[
input_channel
,
num_filters
]
+
filter_size
img_filter
=
helper
.
create_parameter
(
...
...
@@ -1836,7 +1817,12 @@ def conv2d_transpose(input,
inputs
=
{
'Input'
:
[
input
],
'Filter'
:
[
img_filter
]},
outputs
=
{
'Output'
:
out
},
attrs
=
op_attr
)
attrs
=
{
'strides'
:
stride
,
'paddings'
:
padding
,
'dilations'
:
dilation
,
'use_cudnn'
:
use_cudnn
})
return
out
...
...
python/paddle/fluid/layers/utils.py
0 → 100644
浏览文件 @
087d8e7f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
def
convert_to_list
(
value
,
n
,
name
,
dtype
=
np
.
int
):
"""
Converts a single numerical type or iterable of numerical
types into an numerical type list.
Arguments:
value: The value to validate and convert. Could an int, or any iterable
of ints.
n: The size of the list to be returned.
name: The name of the argument being validated, e.g. "stride" or
"filter_size". This is only used to format error messages.
dtype: the numerical type of the element of the list to be returned.
Returns:
A list of n dtypes.
Raises:
ValueError: If something else than an int/long or iterable thereof was
passed.
"""
if
isinstance
(
value
,
dtype
):
return
[
value
,
]
*
n
else
:
try
:
value_list
=
list
(
value
)
except
TypeError
:
raise
ValueError
(
"The "
+
name
+
"'s type must be list or tuple. Received: "
+
str
(
value
))
if
len
(
value_list
)
!=
n
:
raise
ValueError
(
"The "
+
name
+
"'s length must be "
+
str
(
n
)
+
". Received: "
+
str
(
value
))
for
single_value
in
value_list
:
try
:
dtype
(
single_value
)
except
(
ValueError
,
TypeError
):
raise
ValueError
(
"The "
+
name
+
"'s type must be a list or tuple of "
+
str
(
n
)
+
" "
+
str
(
dtype
)
+
" . Received: "
+
str
(
value
)
+
" "
"including element "
+
str
(
single_value
)
+
" of type"
+
" "
+
str
(
type
(
single_value
)))
return
value_list
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录