未验证 提交 07f68fad 编写于 作者: L Leo Chen 提交者: GitHub

[cherry pick] Some optimizations of elementwise_add, gelu and dropout for AMP (#30152)

* Improve performance of elementwise_add grad op (#29187)

* pass stop_gradient for cast op

* improve performance of elementwise_add grad

* use tensor copy async

* dygraph branch

* fix dygraph branch

* add ut

* make gelu fp16 computing more robust (#29484)

* Add fast path for dropout when p == 0  (#29553)

* add fast path for p == 0 in dropout

* add ut
上级 44b81e63
......@@ -144,7 +144,20 @@ class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
// skip out
auto *out = dout;
if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
// Special case when dy is not needed and dx doesn't reduce
if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
VLOG(4) << "Special case when dy is not needed and dx doesn't "
"reduce";
framework::TensorCopy(
*dout, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dx);
} else if (dx == nullptr && dy != nullptr && dy->dims() == dout->dims()) {
VLOG(4) << "Special case when dx is not needed and dy doesn't "
"reduce";
framework::TensorCopy(
*dout, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dy);
} else if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
} else {
default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
......
......@@ -36,10 +36,22 @@ struct GeluFunctor {
void operator()(Device d, X x, Out out, bool approximate) const {
if (approximate) {
// gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
auto temp = (static_cast<T>(M_2_SQRTPI * M_SQRT1_2) *
(x + static_cast<T>(0.044715) * x.cube()))
.tanh();
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
if (std::is_same<T, platform::float16>::value) {
VLOG(4) << "cast from float16 to float before computing";
auto casted_x = x.template cast<float>();
auto temp =
(static_cast<float>(M_2_SQRTPI * M_SQRT1_2) *
(casted_x + static_cast<float>(0.044715) * casted_x.cube()))
.tanh();
out.device(d) = (casted_x * static_cast<float>(0.5) *
(static_cast<float>(1) + temp))
.template cast<T>();
} else {
auto temp = (static_cast<T>(M_2_SQRTPI * M_SQRT1_2) *
(x + static_cast<T>(0.044715) * x.cube()))
.tanh();
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
}
} else {
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
!defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
......@@ -60,8 +72,17 @@ struct GeluFunctor {
}
#else
// gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))
auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
if (std::is_same<T, platform::float16>::value) {
VLOG(4) << "cast from float16 to float before computing";
auto casted_x = x.template cast<float>();
auto temp = (casted_x * static_cast<float>(M_SQRT1_2)).erf();
out.device(d) = (casted_x * static_cast<float>(0.5) *
(static_cast<float>(1) + temp))
.template cast<T>();
} else {
auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
}
#endif
}
}
......@@ -72,13 +93,32 @@ struct GeluGradFunctor {
template <typename Device, typename X, typename dOut, typename dX>
void operator()(Device d, X x, dOut dout, dX dx, bool approximate) const {
if (approximate) {
const T kAlpha = static_cast<T>(M_2_SQRTPI * M_SQRT1_2);
const T kBeta = kAlpha * static_cast<T>(0.044715) * static_cast<T>(3);
const auto y =
(kAlpha * ((static_cast<T>(0.044715) * x.cube()) + x)).tanh();
dx.device(d) = static_cast<T>(0.5) * dout *
(static_cast<T>(1) + y +
(x - x * y.square()) * (kAlpha + kBeta * x.square()));
if (std::is_same<T, platform::float16>::value) {
VLOG(4) << "cast from float16 to float before computing";
auto casted_x = x.template cast<float>();
auto casted_dout = dout.template cast<float>();
const float kAlpha = static_cast<float>(M_2_SQRTPI * M_SQRT1_2);
const float kBeta =
kAlpha * static_cast<float>(0.044715) * static_cast<float>(3);
const auto y =
(kAlpha *
((static_cast<float>(0.044715) * casted_x.cube()) + casted_x))
.tanh();
dx.device(d) = (static_cast<float>(0.5) * casted_dout *
(static_cast<float>(1) + y +
(casted_x - casted_x * y.square()) *
(kAlpha + kBeta * casted_x.square())))
.template cast<T>();
} else {
const T kAlpha = static_cast<T>(M_2_SQRTPI * M_SQRT1_2);
const T kBeta = kAlpha * static_cast<T>(0.044715) * static_cast<T>(3);
const auto y =
(kAlpha * ((static_cast<T>(0.044715) * x.cube()) + x)).tanh();
dx.device(d) = static_cast<T>(0.5) * dout *
(static_cast<T>(1) + y +
(x - x * y.square()) * (kAlpha + kBeta * x.square()));
}
} else {
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
!defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
......@@ -117,13 +157,26 @@ struct GeluGradFunctor {
#else
// gelu_grad(x) = dout * 0.5 * (1 + erf(x / sqrt(2)) + x * sqrt(2 / pi) *
// exp(- x^2 / 2)
auto first =
static_cast<T>(0.5) *
(static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));
auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
(-static_cast<T>(0.5) * x.square()).exp();
dx.device(d) = dout * (first + second);
if (std::is_same<T, platform::float16>::value) {
VLOG(4) << "cast from float16 to float before computing";
auto casted_x = x.template cast<float>();
auto casted_dout = dout.template cast<float>();
auto first = static_cast<float>(0.5) *
(static_cast<float>(1) +
((casted_x * static_cast<float>(M_SQRT1_2)).erf()));
auto second = static_cast<float>(0.5 * M_2_SQRTPI * M_SQRT1_2) *
casted_x *
(-static_cast<float>(0.5) * casted_x.square()).exp();
dx.device(d) = (casted_dout * (first + second)).template cast<T>();
} else {
auto first =
static_cast<T>(0.5) *
(static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));
auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
(-static_cast<T>(0.5) * x.square()).exp();
dx.device(d) = dout * (first + second);
}
#endif
}
}
......
......@@ -1476,6 +1476,9 @@ class Dropout(layers.Layer):
self._is_test = is_test
def forward(self, input):
# fast return for p == 0
if self._dropout_prob == 0:
return input
prog = default_main_program()
if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
self._seed = prog.random_seed
......
......@@ -179,6 +179,7 @@ def monkey_patch_variable():
outputs={"Out": [out]},
attrs={"in_dtype": self.dtype,
"out_dtype": out.dtype})
out.stop_gradient = self.stop_gradient
return out
def _scalar_op_(var, scale, bias):
......
......@@ -1018,6 +1018,9 @@ def dropout(x,
x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
dropped = fluid.layers.dropout(x, dropout_prob=0.5)
"""
# fast return for p == 0
if dropout_prob == 0:
return x
def get_attrs(prog, dropout_prob, is_test, seed):
if (seed is None or seed == 0) and prog.random_seed != 0:
......
......@@ -224,6 +224,11 @@ def cast(x, dtype):
x = paddle.to_tensor([2, 3, 4], 'float64')
y = paddle.cast(x, 'uint8')
"""
if in_dygraph_mode():
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
check_variable_and_dtype(
x, 'x',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
......@@ -234,7 +239,8 @@ def cast(x, dtype):
], 'cast')
helper = LayerHelper('cast', **locals())
out = helper.create_variable_for_type_inference(dtype=dtype)
out = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=x.stop_gradient)
helper.append_op(
type='cast',
inputs={'X': [x]},
......
......@@ -302,13 +302,16 @@ class TestDropoutFAPI(unittest.TestCase):
training=False,
mode='downscale_in_infer')
res10 = paddle.nn.functional.dropout(x=input, p=1., training=True)
res11 = paddle.fluid.layers.dropout(x=input, dropout_prob=0.)
in_np = np.random.random([40, 40]).astype("float32")
res_np = in_np
res_np2 = np.zeros_like(in_np)
exe = fluid.Executor(place)
res_list = [res1, res2, res3, res4, res5, res6, res7, res8, res9]
res_list = [
res1, res2, res3, res4, res5, res6, res7, res8, res9, res11
]
for res in res_list:
fetches = exe.run(fluid.default_main_program(),
feed={"input": in_np},
......@@ -383,8 +386,12 @@ class TestDropoutFAPI(unittest.TestCase):
mode='downscale_in_infer')
res10 = paddle.nn.functional.dropout(
x=input, p=1., training=True)
dropout = paddle.fluid.dygraph.Dropout(p=0, )
res11 = dropout(input)
res_list = [res1, res2, res3, res4, res5, res6, res7, res8, res9]
res_list = [
res1, res2, res3, res4, res5, res6, res7, res8, res9, res11
]
for res in res_list:
self.assertTrue(np.allclose(res.numpy(), res_np))
self.assertTrue(np.allclose(res10.numpy(), res_np2))
......
......@@ -257,6 +257,19 @@ class TestMathOpPatches(unittest.TestCase):
fetch_list=[b])
self.assertTrue(numpy.allclose(-a_np, b_np))
@prog_scope()
def test_astype(self):
a = fluid.layers.data(name="a", shape=[10, 1])
b = a.astype('float32')
place = fluid.CPUPlace()
exe = fluid.Executor(place)
a_np = numpy.random.uniform(-1, 1, size=[10, 1]).astype('float64')
b_np = exe.run(fluid.default_main_program(),
feed={"a": a_np},
fetch_list=[b])
self.assertTrue(numpy.allclose(a_np.astype('float32'), b_np))
if __name__ == '__main__':
unittest.main()
......@@ -887,6 +887,10 @@ def dropout(x,
print(y_01)
"""
# fast return for p == 0
if p == 0:
return x
if not isinstance(p, (float, int)):
raise TypeError("p argument should be a number")
if p < 0 or p > 1:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册