Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
06cf314a
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
06cf314a
编写于
12月 21, 2021
作者:
B
baoachun
提交者:
GitHub
12月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add seqpool_cvm_concat_fuse_pass ut (#37902)
* add seqpool_cvm_concat_fuse_pass ut * rename ut name
上级
e0fd3bbf
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
160 addition
and
1 deletion
+160
-1
paddle/fluid/framework/ir/seqpool_cvm_concat_fuse_pass.cc
paddle/fluid/framework/ir/seqpool_cvm_concat_fuse_pass.cc
+8
-1
python/paddle/fluid/tests/unittests/ir/inference/test_seqpool_cvm_concat_fuse_pass_py.py
...ests/ir/inference/test_seqpool_cvm_concat_fuse_pass_py.py
+152
-0
未找到文件。
paddle/fluid/framework/ir/seqpool_cvm_concat_fuse_pass.cc
浏览文件 @
06cf314a
...
...
@@ -16,6 +16,7 @@
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -65,7 +66,7 @@ SeqPoolCVMConcatFusePass::SeqPoolCVMConcatFusePass() {
.
IsOptional
()
.
End
()
.
AddAttr
(
"pooltype"
)
.
IsString
In
({
"AVERAGE"
,
"SUM"
,
"SQRT"
,
"LAST"
,
"FIRST"
,
"MAX"
}
)
.
IsString
EQ
(
"SUM"
)
.
End
()
.
AddAttr
(
"pad_value"
)
.
End
();
...
...
@@ -198,3 +199,9 @@ void SeqPoolCVMConcatFusePass::ApplyImpl(ir::Graph* graph) const {
REGISTER_PASS
(
seqpool_cvm_concat_fuse_pass
,
paddle
::
framework
::
ir
::
SeqPoolCVMConcatFusePass
);
REGISTER_PASS_CAPABILITY
(
seqpool_cvm_concat_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"sequence_pool"
,
0
)
.
EQ
(
"cvm"
,
0
)
.
EQ
(
"concat"
,
0
));
python/paddle/fluid/tests/unittests/ir/inference/test_seqpool_cvm_concat_fuse_pass_py.py
0 → 100644
浏览文件 @
06cf314a
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
PassAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
,
OpConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
hypothesis
from
hypothesis
import
given
,
settings
,
seed
,
example
,
assume
import
hypothesis.strategies
as
st
from
functools
import
reduce
class
TestSeqpoolCvmConcatFusePass
(
PassAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_config
(
self
,
draw
):
is_test
=
True
pooltype
=
"SUM"
pad_value1
=
draw
(
st
.
floats
())
pad_value2
=
draw
(
st
.
floats
())
pad_value3
=
draw
(
st
.
floats
())
use_cvm
=
True
axis
=
draw
(
st
.
sampled_from
([
1
]))
batch_size
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
))
def
generate_input1
():
shape
=
[
batch_size
,
128
,
6
,
120
]
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_input2
():
shape
=
[
batch_size
,
2
]
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_input3
():
return
np
.
random
.
random
([
1
,
768
]).
astype
(
np
.
float32
)
im2sequence_op
=
OpConfig
(
type
=
"im2sequence"
,
inputs
=
{
"X"
:
[
"input_data1"
]},
outputs
=
{
"Out"
:
[
"seq_out"
]},
attrs
=
{
"kernels"
:
[
6
,
1
],
"out_stride"
:
[
1
,
1
],
"paddings"
:
[
0
,
0
,
0
,
0
],
"strides"
:
[
1
,
1
]
})
sequence_pool_op1
=
OpConfig
(
type
=
"sequence_pool"
,
inputs
=
{
"X"
:
[
"seq_out"
]},
outputs
=
{
"Out"
:
[
"seq_pool1_out"
],
"MaxIndex"
:
[
"index1_out"
]},
attrs
=
{
"is_test"
:
is_test
,
"pooltype"
:
pooltype
,
"pad_value"
:
pad_value1
})
sequence_pool_op2
=
OpConfig
(
type
=
"sequence_pool"
,
inputs
=
{
"X"
:
[
"seq_out"
]},
outputs
=
{
"Out"
:
[
"seq_pool2_out"
],
"MaxIndex"
:
[
"index2_out"
]},
attrs
=
{
"is_test"
:
is_test
,
"pooltype"
:
pooltype
,
"pad_value"
:
pad_value2
})
sequence_pool_op3
=
OpConfig
(
type
=
"sequence_pool"
,
inputs
=
{
"X"
:
[
"seq_out"
]},
outputs
=
{
"Out"
:
[
"seq_pool3_out"
],
"MaxIndex"
:
[
"index3_out"
]},
attrs
=
{
"is_test"
:
is_test
,
"pooltype"
:
pooltype
,
"pad_value"
:
pad_value3
})
cvm_op1
=
OpConfig
(
type
=
"cvm"
,
inputs
=
{
"X"
:
[
"seq_pool1_out"
],
"CVM"
:
[
"input_data2"
]},
outputs
=
{
"Y"
:
[
"cvm1_out"
]},
attrs
=
{
"use_cvm"
:
use_cvm
})
cvm_op2
=
OpConfig
(
type
=
"cvm"
,
inputs
=
{
"X"
:
[
"seq_pool2_out"
],
"CVM"
:
[
"input_data2"
]},
outputs
=
{
"Y"
:
[
"cvm2_out"
]},
attrs
=
{
"use_cvm"
:
use_cvm
})
cvm_op3
=
OpConfig
(
type
=
"cvm"
,
inputs
=
{
"X"
:
[
"seq_pool3_out"
],
"CVM"
:
[
"input_data2"
]},
outputs
=
{
"Y"
:
[
"cvm3_out"
]},
attrs
=
{
"use_cvm"
:
use_cvm
})
concat_op
=
OpConfig
(
type
=
"concat"
,
inputs
=
{
"X"
:
[
"cvm1_out"
,
"cvm2_out"
,
"cvm3_out"
]},
outputs
=
{
"Out"
:
[
"concat_output"
]},
attrs
=
{
'axis'
:
axis
})
model_net
=
[
im2sequence_op
,
sequence_pool_op1
,
sequence_pool_op2
,
sequence_pool_op3
,
cvm_op1
,
cvm_op2
,
cvm_op3
,
concat_op
]
program_config
=
ProgramConfig
(
ops
=
model_net
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
)),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input2
)),
"input_data3"
:
TensorConfig
(
data_gen
=
partial
(
generate_input3
))
},
outputs
=
[
"concat_output"
])
return
program_config
def
sample_predictor_configs
(
self
,
program_config
):
config
=
self
.
create_inference_config
()
yield
config
,
[
"im2sequence"
,
"fusion_seqpool_cvm_concat"
],
(
1e-5
,
1e-5
)
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
passes
=
[
"seqpool_cvm_concat_fuse_pass"
])
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录