Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
05239b6f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
05239b6f
编写于
10月 24, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix functor
上级
6f02fe7d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
142 addition
and
195 deletion
+142
-195
paddle/operators/math/sequence_project.h
paddle/operators/math/sequence_project.h
+121
-86
paddle/operators/sequence_conv_op.h
paddle/operators/sequence_conv_op.h
+21
-109
未找到文件。
paddle/operators/math/sequence_project.h
浏览文件 @
05239b6f
...
...
@@ -90,108 +90,143 @@ template <typename Place, typename T>
class
SequenceProjectFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
LoDTensor
*
in
,
const
framework
::
LoDTensor
*
padding_data
,
framework
::
LoDTensor
*
col
,
bool
padding_trainable
,
framework
::
LoDTensor
&
in
,
framework
::
LoDTensor
&
padding_data
,
framework
::
LoDTensor
&
col
,
bool
padding_trainable
,
int
context_start
,
int
context_length
,
int
context_stride
,
int
up_pad
,
int
down_pad
)
{
auto
lod_level_0
=
in
->
lod
()[
0
];
int
up_pad
,
int
down_pad
,
bool
gradient
,
bool
input_grad
,
bool
pad_grad
)
{
auto
lod_level_0
=
in
.
lod
()[
0
];
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
im2col_ocf
;
paddle
::
operators
::
math
::
Col2ImFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
col2im_ocf
;
int
input_row_begin
,
input_row_end
;
int
sequence_height
,
sequence_width
;
sequence_width
=
in
->
dims
()[
1
];
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_level_0
.
size
())
-
1
;
++
i
)
{
input_row_begin
=
(
context_start
>
0
)
?
static_cast
<
int
>
(
lod_level_0
[
i
])
+
context_start
:
static_cast
<
int
>
(
lod_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]);
framework
::
Tensor
out_t
=
col
->
Slice
(
static_cast
<
int
>
(
lod_level_0
[
i
]),
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]));
sequence_height
=
static_cast
<
int
>
(
out_t
.
dims
()[
0
]);
if
(
input_row_begin
<
input_row_end
)
{
framework
::
Tensor
in_t
=
in
->
Slice
(
input_row_begin
,
input_row_end
);
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels, filter_height, filter_width
out_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
input_row_end
-
input_row_begin
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
im2col_ocf
(
context
,
in_t
,
out_t
,
/*stride_height*/
context_stride
,
/*stride_width*/
1
,
up_pad
,
down_pad
,
0
,
0
);
sequence_width
=
in
.
dims
()[
1
];
input_grad
=
gradient
&&
input_grad
;
pad_grad
=
gradient
&&
pad_grad
;
if
(
!
gradient
||
input_grad
)
{
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_level_0
.
size
())
-
1
;
++
i
)
{
input_row_begin
=
(
context_start
>
0
)
?
static_cast
<
int
>
(
lod_level_0
[
i
])
+
context_start
:
static_cast
<
int
>
(
lod_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]);
framework
::
Tensor
out_t
=
col
.
Slice
(
static_cast
<
int
>
(
lod_level_0
[
i
]),
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]));
sequence_height
=
static_cast
<
int
>
(
out_t
.
dims
()[
0
]);
if
(
input_row_begin
<
input_row_end
)
{
framework
::
Tensor
in_t
=
in
.
Slice
(
input_row_begin
,
input_row_end
);
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels, filter_height, filter_width
out_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
input_row_end
-
input_row_begin
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
if
(
gradient
)
{
col2im_ocf
(
context
,
in_t
,
out_t
,
/*stride_height*/
context_stride
,
/*stride_width*/
1
,
up_pad
,
down_pad
,
0
,
0
);
}
else
{
im2col_ocf
(
context
,
in_t
,
out_t
,
/*stride_height*/
context_stride
,
/*stride_width*/
1
,
up_pad
,
down_pad
,
0
,
0
);
}
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
}
if
(
!
gradient
||
pad_grad
)
{
if
(
padding_trainable
)
{
// add up trainable data
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
>
0
)
{
// add up pad
int
padding_rows
=
std
::
min
(
up_pad
,
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]
-
lod_level_0
[
i
]));
for
(
int
k
=
0
;
k
<
padding_rows
;
++
k
)
{
int
padding_size
=
k
+
context_length
<
up_pad
?
context_length
:
up_pad
-
k
;
framework
::
Tensor
out_t_sub
=
out_t
.
Slice
(
k
*
context_length
,
k
*
context_length
+
padding_size
);
framework
::
Tensor
w_sub
=
padding_data
->
Slice
(
k
,
k
+
padding_size
);
// in this block, using EigenVector<T>::Flatten is ok too.
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
*
context
.
GetEigenDevice
<
Place
>
())
=
w_sub_e
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_level_0
.
size
())
-
1
;
++
i
)
{
framework
::
Tensor
out_t
=
col
.
Slice
(
static_cast
<
int
>
(
lod_level_0
[
i
]),
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]));
sequence_height
=
static_cast
<
int
>
(
out_t
.
dims
()[
0
]);
// add up trainable data
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
>
0
)
{
// add up pad
int
padding_rows
=
std
::
min
(
up_pad
,
static_cast
<
int
>
(
lod_level_0
[
i
+
1
]
-
lod_level_0
[
i
]));
for
(
int
k
=
0
;
k
<
padding_rows
;
++
k
)
{
int
padding_size
=
k
+
context_length
<
up_pad
?
context_length
:
up_pad
-
k
;
framework
::
Tensor
out_t_sub
=
out_t
.
Slice
(
k
*
context_length
,
k
*
context_length
+
padding_size
);
framework
::
Tensor
w_sub
=
padding_data
.
Slice
(
k
,
k
+
padding_size
);
// in this block, using EigenVector<T>::Flatten is ok too.
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
if
(
gradient
)
{
w_sub_e
.
device
(
*
context
.
GetEigenDevice
<
Place
>
())
=
w_sub_e
+
out_t_sub_e
;
}
else
{
out_t_sub_e
.
device
(
*
context
.
GetEigenDevice
<
Place
>
())
=
w_sub_e
;
}
}
}
}
if
(
down_pad
>
0
)
{
// add down pad
int
down_pad_begin_row
=
std
::
max
(
0
,
(
sequence_height
-
context_start
-
context_length
)
+
1
)
+
1
;
int
padding_begin
=
std
::
max
(
0
,
context_start
-
sequence_height
);
int
padding_size
=
sequence_height
-
context_start
>=
context_length
?
1
:
context_length
-
(
sequence_height
-
context_start
);
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
int
padding_idx
=
padding_begin
;
for
(
int
t
=
0
;
t
+
down_pad_begin_row
<=
sequence_height
;
++
t
,
++
padding_size
)
{
if
(
down_pad
>
0
)
{
// add down pad
int
down_pad_begin_row
=
std
::
max
(
0
,
(
sequence_height
-
context_start
-
context_length
)
+
1
)
+
1
;
int
padding_begin
=
std
::
max
(
0
,
context_start
-
sequence_height
);
int
padding_size
=
sequence_height
-
context_start
>=
context_length
?
1
:
context_length
-
(
sequence_height
-
context_start
);
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
if
(
padding_size
>
context_length
)
{
padding_size
=
context_length
;
padding_idx
++
;
int
padding_idx
=
padding_begin
;
for
(
int
t
=
0
;
t
+
down_pad_begin_row
<=
sequence_height
;
++
t
,
++
padding_size
)
{
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
if
(
padding_size
>
context_length
)
{
padding_size
=
context_length
;
padding_idx
++
;
}
if
(
padding_begin
>
0
||
sequence_height
==
context_start
)
padding_idx
=
padding_begin
+
t
;
framework
::
Tensor
out_t_sub
=
out_t
.
Slice
(
(
down_pad_begin_row
+
t
)
*
context_length
-
padding_size
,
(
down_pad_begin_row
+
t
)
*
context_length
);
framework
::
Tensor
w_sub
=
padding_data
.
Slice
(
up_pad
+
padding_idx
,
up_pad
+
padding_idx
+
padding_size
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
if
(
gradient
)
{
w_sub_e
.
device
(
*
context
.
GetEigenDevice
<
Place
>
())
=
w_sub_e
+
out_t_sub_e
;
}
else
{
out_t_sub_e
.
device
(
*
context
.
GetEigenDevice
<
Place
>
())
=
w_sub_e
;
}
}
if
(
padding_begin
>
0
||
sequence_height
==
context_start
)
padding_idx
=
padding_begin
+
t
;
framework
::
Tensor
out_t_sub
=
out_t
.
Slice
(
(
down_pad_begin_row
+
t
)
*
context_length
-
padding_size
,
(
down_pad_begin_row
+
t
)
*
context_length
);
framework
::
Tensor
w_sub
=
padding_data
->
Slice
(
up_pad
+
padding_idx
,
up_pad
+
padding_idx
+
padding_size
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
out_t_sub_e
.
device
(
*
context
.
GetEigenDevice
<
Place
>
())
=
w_sub_e
;
}
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
out_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
}
};
...
...
paddle/operators/sequence_conv_op.h
浏览文件 @
05239b6f
...
...
@@ -39,6 +39,7 @@ class SequenceConvKernel : public framework::OpKernel<T> {
auto
filter
=
*
context
.
Input
<
LoDTensor
>
(
"Filter"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// out->set_lod(in->lod());
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
...
...
@@ -71,10 +72,12 @@ class SequenceConvKernel : public framework::OpKernel<T> {
paddle
::
operators
::
math
::
SequenceProjectFunctor
<
Place
,
T
>
seq_project_functor
;
LoDTensor
*
input
=
const_cast
<
LoDTensor
*>
(
in
);
LoDTensor
*
pad_data
=
const_cast
<
LoDTensor
*>
(
padding_data
);
seq_project_functor
(
context
.
device_context
(),
in
,
padding_data
,
&
col
,
seq_project_functor
(
context
.
device_context
(),
*
input
,
*
pad_data
,
col
,
padding_trainable
,
context_start
,
context_length
,
context_stride
,
up_pad
,
down_pad
);
context_stride
,
up_pad
,
down_pad
,
false
,
false
,
false
);
filter
.
Resize
(
framework
::
make_ddim
({
context_length
*
sequence_width
,
1
}));
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
col
,
false
,
filter
,
false
,
...
...
@@ -95,8 +98,6 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
filter
=
context
.
Input
<
LoDTensor
>
(
"Filter"
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
int
context_stride
=
context
.
Attr
<
int
>
(
"context_stride"
);
...
...
@@ -109,10 +110,7 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
int
sequence_height
,
sequence_width
;
int
input_row_begin
,
input_row_end
;
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
int
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
// use col_shape in the im2col calculation
framework
::
DDim
col_shape
=
{
in
->
dims
()[
0
],
...
...
@@ -129,50 +127,19 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
*
out_g
,
false
,
*
filter
,
true
,
T
(
1.0
),
&
col
,
T
(
1.0
));
}
paddle
::
operators
::
math
::
SequenceProjectFunctor
<
Place
,
T
>
seq_project_functor
;
if
(
in_g
)
{
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
in_g
->
set_lod
(
in
->
lod
());
math
::
SetConstant
<
Place
,
T
>
functor
;
functor
(
context
.
device_context
(),
in_g
,
0
);
paddle
::
operators
::
math
::
Col2ImFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kOCF
,
Place
,
float
>
col2im_ocf
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_g_level_0
.
size
())
-
1
;
++
i
)
{
input_row_begin
=
(
context_start
>
0
)
?
static_cast
<
int
>
(
lod_g_level_0
[
i
])
+
context_start
:
static_cast
<
int
>
(
lod_g_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]);
Tensor
col_t
=
col
.
Slice
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
sequence_height
=
static_cast
<
int
>
(
col_t
.
dims
()[
0
]);
if
(
input_row_begin
<
input_row_end
)
{
Tensor
in_t
=
in_g
->
Slice
(
input_row_begin
,
input_row_end
);
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels, filter_height, filter_width
col_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
input_row_end
-
input_row_begin
,
sequence_width
});
// input_channels, input_height, input_width
in_t
.
Resize
(
framework
::
make_ddim
(
input_shape
));
col2im_ocf
(
context
.
device_context
(),
in_t
,
col_t
,
/*stride_height*/
context_stride
,
/*stride_width*/
1
,
up_pad
,
down_pad
,
0
,
0
);
}
col_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
seq_project_functor
(
context
.
device_context
(),
*
in_g
,
*
padding_data_g
,
col
,
padding_trainable
,
context_start
,
context_length
,
context_stride
,
up_pad
,
down_pad
,
true
,
true
,
false
);
}
if
(
padding_trainable
&&
padding_data_g
)
{
...
...
@@ -181,66 +148,10 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
math
::
SetConstant
<
Place
,
T
>
functor
;
functor
(
context
.
device_context
(),
padding_data_g
,
0
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_g_level_0
.
size
())
-
1
;
++
i
)
{
Tensor
col_t
=
col
.
Slice
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
sequence_height
=
static_cast
<
int
>
(
col_t
.
dims
()[
0
]);
col_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
*
context_length
,
sequence_width
}));
if
(
up_pad
>
0
)
{
// add up pad
int
padding_rows
=
std
::
min
(
up_pad
,
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]
-
lod_g_level_0
[
i
]));
for
(
int
k
=
0
;
k
<
padding_rows
;
++
k
)
{
int
padding_size
=
k
+
context_length
<
up_pad
?
context_length
:
up_pad
-
k
;
Tensor
out_t_sub
=
col_t
.
Slice
(
k
*
context_length
,
k
*
context_length
+
padding_size
);
Tensor
w_sub
=
padding_data_g
->
Slice
(
k
,
k
+
padding_size
);
// in this block, using EigenVector<T>::Flatten is ok too.
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
}
}
if
(
down_pad
>
0
)
{
// add down pad
int
down_pad_begin_row
=
std
::
max
(
0
,
(
sequence_height
-
context_start
-
context_length
)
+
1
)
+
1
;
int
padding_begin
=
std
::
max
(
0
,
context_start
-
sequence_height
);
int
padding_size
=
sequence_height
-
context_start
>=
context_length
?
1
:
context_length
-
(
sequence_height
-
context_start
);
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
int
padding_idx
=
padding_begin
;
for
(
int
t
=
0
;
t
+
down_pad_begin_row
<=
sequence_height
;
++
t
,
++
padding_size
)
{
if
(
context_start
>=
sequence_height
)
padding_size
=
context_length
;
if
(
padding_size
>
context_length
)
{
padding_size
=
context_length
;
padding_idx
++
;
}
if
(
padding_begin
>
0
||
sequence_height
==
context_start
)
padding_idx
=
padding_begin
+
t
;
Tensor
out_t_sub
=
col_t
.
Slice
(
(
down_pad_begin_row
+
t
)
*
context_length
-
padding_size
,
(
down_pad_begin_row
+
t
)
*
context_length
);
Tensor
w_sub
=
padding_data_g
->
Slice
(
up_pad
+
padding_idx
,
up_pad
+
padding_idx
+
padding_size
);
auto
out_t_sub_e
=
EigenMatrix
<
T
>::
From
(
out_t_sub
);
auto
w_sub_e
=
EigenMatrix
<
T
>::
From
(
w_sub
);
w_sub_e
.
device
(
place
)
=
w_sub_e
+
out_t_sub_e
;
}
}
col_t
.
Resize
(
framework
::
make_ddim
(
{
sequence_height
,
context_length
*
sequence_width
}));
}
LoDTensor
*
input
=
const_cast
<
LoDTensor
*>
(
in
);
seq_project_functor
(
context
.
device_context
(),
*
input
,
*
padding_data_g
,
col
,
padding_trainable
,
context_start
,
context_length
,
context_stride
,
up_pad
,
down_pad
,
true
,
false
,
true
);
}
if
(
filter_g
)
{
...
...
@@ -259,12 +170,13 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
paddle
::
operators
::
math
::
SequenceProjectFunctor
<
Place
,
T
>
seq_project_functor
;
LoDTensor
*
input
=
const_cast
<
LoDTensor
*>
(
in
);
LoDTensor
*
pad_data
=
const_cast
<
LoDTensor
*>
(
padding_data
)
;
seq_project_functor
(
context
.
device_context
(),
in
,
padding_data
,
&
col
,
seq_project_functor
(
context
.
device_context
(),
*
input
,
*
pad_data
,
col
,
padding_trainable
,
context_start
,
context_length
,
context_stride
,
up_pad
,
down_pad
);
context_stride
,
up_pad
,
down_pad
,
false
,
false
,
false
);
filter_grad_
.
Resize
(
framework
::
make_ddim
({
context_length
*
sequence_width
,
1
}));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录