1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from . import mp_ops
from paddle.fluid import core
from paddle.fluid.dygraph.layers import Layer
from .random import get_rng_state_tracker
from paddle.nn import functional as F
from paddle import framework
from paddle.autograd import PyLayer
from ...base import topology as tp
__all__ = []
# Follow this paper to achieve the file:
# Shoeybi M, Patwary M, Puri R, et al. Megatron-lm: Training multi-billion parameter
# language models using model parallelism[J]. arXiv preprint arXiv:1909.08053, 2019. (https://arxiv.org/abs/1909.08053)
def is_fused_matmul_bias_supported():
if paddle.is_compiled_with_cuda() and not paddle.is_compiled_with_rocm():
return hasattr(core.ops, 'fused_gemm_epilogue')
else:
return False
class VocabParallelEmbedding(Layer):
"""Embedding mp parallelized in the vocabulary dimension.
this class is used for splitting embedding in mp group.
Args:
num_embeddings(int): One element which indicate the size of the dictionary of embeddings.
embedding_dim(int): One element which indicate the size of each embedding vector respectively.
weight_attr(ParamAttr|None): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
The local word vector needs to be transformed into numpy format, and the shape of local word
vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
is used to load custom or pre-trained word vectors. See code example for details.
mp_group(Group): The tensor parallel group.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Examples:
.. code-block:: python
import paddle
from paddle.distributed import fleet
class SimpleMPNet(paddle.nn.Layer):
def __init__(self, vocab_size, hidden_size, inner_size, output_size):
super(SimpleMPNet, self).__init__()
self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
hidden_size,
inner_size,
gather_output=False,
has_bias=True)
self.linear2 = fleet.meta_parallel.RowParallelLinear(
inner_size,
hidden_size,
input_is_parallel=True,
has_bias=True)
self.linear3 = paddle.nn.Linear(hidden_size, output_size)
self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
vocab_size,
hidden_size)
def forward(self, x):
x = self.embedding(x)
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
return x
"""
def __init__(self,
num_embeddings,
embedding_dim,
weight_attr=None,
mp_group=None,
name=None):
super(VocabParallelEmbedding, self).__init__()
self.model_parallel_group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group(
) if mp_group is None else mp_group
self.world_size = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size(
) if mp_group is None else mp_group.nranks
self.rank = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank(
) if mp_group is None else mp_group.rank
self.origin_num_embeddings = num_embeddings
self.is_mp = (self.world_size > 1)
assert num_embeddings % self.world_size == 0, (
"The length of the vocabulary must be divisible by the parallelism degree of MP"
)
per_part_size = num_embeddings // self.world_size
self.vocab_start_index = self.rank * per_part_size
self._dtype = self._helper.get_default_dtype()
self._size = [per_part_size, embedding_dim]
self._weight_attr = weight_attr
self._name = name
if self.is_mp and paddle.in_dynamic_mode():
with get_rng_state_tracker().rng_state():
self.weight = self.create_parameter(attr=self._weight_attr,
shape=self._size,
dtype=self._dtype,
is_bias=False)
else:
self.weight = self.create_parameter(attr=self._weight_attr,
shape=self._size,
dtype=self._dtype,
is_bias=False)
self.weight.is_distributed = True if self.is_mp else False
def forward(self, x):
if self.is_mp:
output_parallel = mp_ops._c_lookup_table(
self.weight,
x,
start_index=self.vocab_start_index,
name=self._name)
output = mp_ops._mp_allreduce(output_parallel,
group=self.model_parallel_group,
use_calc_stream=True,
use_model_parallel=True)
else:
output = F.embedding(x,
weight=self.weight,
padding_idx=None,
sparse=False,
name=self._name)
return output
class ColumnParallelLinear(Layer):
"""Linear layer with mp parallelized(column).
this class is used for splitting Linear Layer in mp group, column split the weight of the Linear layer.
Args:
in_features(int): The number of input units.
out_features(int): The number of output units.
weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
has_bias(bool): whether to add bias.
gather_output(bool): whether to do allgahter for the output of each rank.
fuse_matmul_bias(bool): whether to fuse matmul and bias.
mp_group(Group): The tensor parallel group.
name(str, optional): Normally there is no need for user to set this parameter.
For detailed information, please refer to :ref:`api_guide_Name` .
Examples:
.. code-block:: python
import paddle
from paddle.distributed import fleet
class SimpleMPNet(paddle.nn.Layer):
def __init__(self, vocab_size, hidden_size, inner_size, output_size):
super(SimpleMPNet, self).__init__()
self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
hidden_size,
inner_size,
gather_output=False,
has_bias=True)
self.linear2 = fleet.meta_parallel.RowParallelLinear(
inner_size,
hidden_size,
input_is_parallel=True,
has_bias=True)
self.linear3 = paddle.nn.Linear(hidden_size, output_size)
self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
vocab_size,
hidden_size)
def forward(self, x):
x = self.embedding(x)
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
return x
"""
def __init__(self,
in_features,
out_features,
weight_attr=None,
has_bias=None,
gather_output=True,
fuse_matmul_bias=False,
mp_group=None,
name=None):
super(ColumnParallelLinear, self).__init__()
self.model_parallel_group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group(
) if mp_group is None else mp_group
self.world_size = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size(
) if mp_group is None else mp_group.nranks
self._name = name
self.is_mp = (self.world_size > 1)
self.gather_output = gather_output
assert out_features % self.world_size == 0, (
"Number of column of the weight for linear ({}) must be"
" divisible by model parallel size ({})".format(
out_features, self.world_size))
self.output_size_per_partition = out_features // self.world_size
self._weight_attr = weight_attr
self._dtype = self._helper.get_default_dtype()
if self.is_mp and paddle.in_dynamic_mode():
with get_rng_state_tracker().rng_state():
self.weight = self.create_parameter(
shape=[in_features, self.output_size_per_partition],
attr=self._weight_attr,
dtype=self._dtype,
is_bias=False)
else:
self.weight = self.create_parameter(
shape=[in_features, self.output_size_per_partition],
attr=self._weight_attr,
dtype=self._dtype,
is_bias=False)
self.weight.is_distributed = True if self.is_mp else False
if has_bias:
# initialize bias to zero like Megatron
self.bias = self.create_parameter(
shape=[self.output_size_per_partition],
attr=paddle.nn.initializer.Constant(value=0.0),
dtype=self._dtype,
is_bias=True)
self.bias.is_distributed = True if self.is_mp else False
else:
self.bias = None
self.linear = F.linear
if fuse_matmul_bias:
if not is_fused_matmul_bias_supported():
raise NotImplementedError(
"You set fuse_matmul_bias=True in ColumnParallelLinear, "
"however, the paddle you are using not support this operation. "
"Please set fuse_matmul_bias=False or use paddle compiled "
"with cuda 11.6 or higher.")
from paddle.incubate.nn.functional import fused_linear
self.linear = fused_linear
def forward(self, x):
# use inner api to process identity
if self.is_mp:
input_parallel = mp_ops._c_identity(x,
group=self.model_parallel_group)
else:
input_parallel = x
output_parallel = self.linear(input_parallel,
self.weight,
self.bias,
name=self._name)
if self.gather_output and self.is_mp:
output = mp_ops._c_concat(output_parallel,
group=self.model_parallel_group)
else:
output = output_parallel
return output
class RowParallelLinear(Layer):
"""Linear layer with mp parallelized(row).
this class is used for splitting Linear Layer in mp group, row split the weight of the Linear layer.
Args:
in_features(int): The number of input units.
out_features(int): The number of output units.
weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
has_bias(bool): whether to add bias.
input_is_parallel(bool): whether the input has alreadly been splitted across the mp group.
fuse_matmul_bias(bool): whether to fuse matmul and bias.
mp_group(Group): The tensor parallel group.
name(str, optional): Normally there is no need for user to set this parameter.
For detailed information, please refer to :ref:`api_guide_Name` .
Examples:
.. code-block:: python
import paddle
from paddle.distributed import fleet
class SimpleMPNet(paddle.nn.Layer):
def __init__(self, vocab_size, hidden_size, inner_size, output_size):
super(SimpleMPNet, self).__init__()
self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
hidden_size,
inner_size,
gather_output=False,
has_bias=True)
self.linear2 = fleet.meta_parallel.RowParallelLinear(
inner_size,
hidden_size,
input_is_parallel=True,
has_bias=True)
self.linear3 = paddle.nn.Linear(hidden_size, output_size)
self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
vocab_size,
hidden_size)
def forward(self, x):
x = self.embedding(x)
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
return x
"""
def __init__(self,
in_features,
out_features,
weight_attr=None,
has_bias=True,
input_is_parallel=False,
fuse_matmul_bias=False,
mp_group=None,
name=None):
super(RowParallelLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.input_is_parallel = input_is_parallel
self._weight_attr = weight_attr
self._dtype = self._helper.get_default_dtype()
self._name = name
self.model_parallel_group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group(
) if mp_group is None else mp_group
self.world_size = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size(
) if mp_group is None else mp_group.nranks
self.rank = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank(
) if mp_group is None else mp_group.rank
self.is_mp = (self.world_size > 1)
assert in_features % self.world_size == 0, (
"Number of row of the weight for linear ({}) must be"
" divisible by model parallel size ({})".format(
in_features, self.world_size))
self.input_size_per_partition = in_features // self.world_size
if self.is_mp and paddle.in_dynamic_mode():
with get_rng_state_tracker().rng_state():
self.weight = self.create_parameter(
shape=[self.input_size_per_partition, self.out_features],
attr=self._weight_attr,
dtype=self._dtype,
is_bias=False)
else:
self.weight = self.create_parameter(
shape=[self.input_size_per_partition, self.out_features],
attr=self._weight_attr,
dtype=self._dtype,
is_bias=False)
self.weight.is_distributed = True if self.is_mp else False
if has_bias:
self.bias = self.create_parameter(
shape=[self.out_features],
attr=paddle.nn.initializer.Constant(value=0.0),
dtype=self._dtype,
is_bias=True)
else:
self.bias = None
self.linear = F.linear
if fuse_matmul_bias:
if not is_fused_matmul_bias_supported():
raise NotImplementedError(
"You set fuse_matmul_bias=True in RowParallelLinear, "
"however, the paddle you are using not support this operation. "
"Please set fuse_matmul_bias=False or use paddle compiled "
"with cuda 11.6 or higher.")
from paddle.incubate.nn.functional import fused_linear
self.linear = fused_linear
def forward(self, x):
if self.input_is_parallel or (not self.is_mp):
input_parallel = x
else:
# split last dim
input_parallel = mp_ops._c_split(x, group=self.model_parallel_group)
if self.is_mp:
output_parallel = self.linear(input_parallel,
self.weight,
name=self._name)
output_ = mp_ops._mp_allreduce(output_parallel,
group=self.model_parallel_group,
use_calc_stream=True,
use_model_parallel=True)
output = output_ + self.bias if self.bias is not None else output_
else:
output = self.linear(input_parallel,
self.weight,
self.bias,
name=self._name)
return output
class ParallelCrossEntropy(Layer):
"""CrossEntropy with mp parallelized.
this class is used for splitting softmax cross entropy in mp group.
Args:
mp_group(Group): The tensor parallel group.
name(str, optional): Normally there is no need for user to set this parameter.
For detailed information, please refer to :ref:`api_guide_Name` .
Examples:
.. code-block:: python
loss_func = ParallelCrossEntropy()
loss = loss_func(img, lable)
"""
def __init__(self, mp_group=None, name=None):
super(ParallelCrossEntropy, self).__init__()
self.name = name
self.model_parallel_group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group(
) if mp_group is None else mp_group
self.world_size = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size(
) if mp_group is None else mp_group.nranks
self.rank = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank(
) if mp_group is None else mp_group.rank
def forward(self, input, label):
loss = mp_ops._c_softmax_with_cross_entropy(
input, label, group=self.model_parallel_group)
return loss