• X
    Run Python OP tests in a single Python process to improve test time. (#8362) · cde6241a
    Xin Pan 提交于
    Currently, our tests run with 2 GPUs, the init time is absurdly long:
    about 4s for each process.  Currently, we run each OP test on
    different processes. This PR:
    
    1. create cmake function py_test_modules which will generate the
    Makefile that runs a list of Python unittest module in a single Python
    process.
    
    2. move all "python unittest compatible" (e.g., used the unittest
    package, not just a regular python file). from fluid/tests to
    fluid/tests/unittests.
    
    3. cmake now will run all OP tests in fluid/tests/unittests in a
    single process, except the time-consuming tests, they are separated
    into different processes to utilize parallelism. Please make sure to
    use the unittest package if you put the python test file in
    fluid/tests/unittests
    
    4. remove all exit(0) from fluid/tests/unittests/*.py, exit(0) is used
    to disable unittest, we can not do it when running all tests in a
    single process since it will terminate the process without running the
    other tests. Instead, the test is disabled in
    fluid/tests/unittests/CMakeLists.txt. FIXME is added for each disabled
    item. Please disable the unittest from
    fluid/tests/unittests/CMakeLists.txt, instead of adding exit(0) to the
    Python file, for all Python file in fluid/tests/unittests/.
    
    5. add an option WITH_FAST_BUNDLE_TEST. When OFF, will run the unit
    tests in separate process so that they can be tested individually.
    cde6241a
test_spp_op.py 2.9 KB
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
from test_pool2d_op import max_pool2D_forward_naive
from test_pool2d_op import avg_pool2D_forward_naive


class TestSppOp(OpTest):
    def setUp(self):
        self.op_type = "spp"
        self.init_test_case()
        input = np.random.random(self.shape).astype("float32")
        nsize, csize, hsize, wsize = input.shape
        out_level_flatten = []
        for i in xrange(self.pyramid_height):
            bins = np.power(2, i)
            kernel_size = [0, 0]
            padding = [0, 0]
            kernel_size[0] = np.ceil(hsize /
                                     bins.astype("double")).astype("int32")
            padding[0] = (
                (kernel_size[0] * bins - hsize + 1) / 2).astype("int32")

            kernel_size[1] = np.ceil(wsize /
                                     bins.astype("double")).astype("int32")
            padding[1] = (
                (kernel_size[1] * bins - wsize + 1) / 2).astype("int32")
            out_level = self.pool2D_forward_naive(input, kernel_size,
                                                  kernel_size, padding)
            out_level_flatten.append(
                out_level.reshape(nsize, bins * bins * csize))
            if i == 0:
                output = out_level_flatten[i]
            else:
                output = np.concatenate((output, out_level_flatten[i]), 1)
        # output = np.concatenate(out_level_flatten.tolist(), 0);
        self.inputs = {'X': input.astype('float32'), }
        self.attrs = {
            'pyramid_height': self.pyramid_height,
            'pooling_type': self.pool_type
        }

        self.outputs = {'Out': output.astype('float32')}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.pool_type != "avg":
            self.check_grad(['X'], 'Out', max_relative_error=0.05)

    def init_test_case(self):
        self.shape = [3, 2, 4, 4]
        self.pyramid_height = 3
        self.pool2D_forward_naive = max_pool2D_forward_naive
        self.pool_type = "max"


class TestCase2(TestSppOp):
    def init_test_case(self):
        self.shape = [3, 2, 4, 4]
        self.pyramid_height = 3
        self.pool2D_forward_naive = avg_pool2D_forward_naive
        self.pool_type = "avg"


if __name__ == '__main__':
    unittest.main()
反馈
建议
客服 返回
顶部