1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <atomic>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>
#include "glog/logging.h" // For VLOG
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
#include "paddle/utils/Error.h"
namespace paddle {
namespace framework {
/// If a variable is a empty variable, that name will be used.
constexpr char kEmptyVarName[] = "@EMPTY@";
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
constexpr char kTempVarName[] = "@TEMP@";
/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
constexpr char kGradVarSuffix[] = "@GRAD";
/// Variables with this suffix are supposed to be filled up with zeros.
constexpr char kZeroVarSuffix[] = "@ZERO";
// define some kernel priority
/* Define multiple kernel type fallback order*/
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;
inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix;
}
class OperatorBase;
class ExecutionContext;
/**
* OperatorBase has the basic element that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
* should always construct a proto message OpDesc and call
* OpRegistry::CreateOp(op_desc) to get an Operator instance.
*/
class OperatorBase {
public:
OperatorBase(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs);
virtual ~OperatorBase() {}
template <typename T>
inline const T& Attr(const std::string& name) const {
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
name);
return boost::get<T>(attrs_.at(name));
}
/// if scope is not null, also show dimensions of arguments
virtual std::string DebugStringEx(const Scope* scope) const;
std::string DebugString() const { return DebugStringEx(nullptr); }
/// Net will call this interface function to Run an op.
// The implementation should be written at RunImpl
void Run(const Scope& scope, const platform::Place& place);
// FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
virtual void Stop() {}
virtual bool IsNetOp() const { return false; }
virtual bool SupportGPU() const { return false; }
/// rename inputs outputs name
void Rename(const std::string& old_name, const std::string& new_name);
const VariableNameMap& Inputs() const { return inputs_; }
const VariableNameMap& Outputs() const { return outputs_; }
//! Get a input with argument's name described in `op_proto`
std::string Input(const std::string& name) const;
//! Get a input which has multiple variables.
const std::vector<std::string>& Inputs(const std::string& name) const;
std::vector<std::string> InputVars() const;
//! Get a output with argument's name described in `op_proto`
std::string Output(const std::string& name) const;
//! Get an output which has multiple variables.
//! TODO add a vector_view to prevent memory copy.
const std::vector<std::string>& Outputs(const std::string& name) const;
virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
const std::string& Type() const { return type_; }
void SetType(const std::string& type) { type_ = type; }
const AttributeMap& Attrs() const { return attrs_; }
// Return a new operator instance, which is as same as this.
// Use unique_ptr to prevent caller forget to delete this pointer.
virtual std::unique_ptr<OperatorBase> Clone() const = 0;
protected:
std::string type_;
// NOTE: in case of OpGrad, inputs_ contains:
// I (Inputs)
// O (Outputs)
// OG (Output Gradients)
VariableNameMap inputs_;
// NOTE: in case of OpGrad, outputs_ contains
// IG (Inputs Gradients)
VariableNameMap outputs_;
AttributeMap attrs_;
private:
void GenerateTemporaryNames();
void CheckAllInputOutputSet() const;
virtual void RunImpl(const Scope& scope,
const platform::Place& place) const = 0;
};
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
// register it. i.e. `Clone` method is not needed to define by yourself.
#define DEFINE_OP_CLONE_METHOD(cls) \
std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final { \
return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
}
// Macro for define a default constructor for Operator.
// You can also use
// using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls) \
cls(const std::string& type, \
const ::paddle::framework::VariableNameMap& inputs, \
const ::paddle::framework::VariableNameMap& outputs, \
const paddle::framework::AttributeMap& attrs) \
: parent_cls(type, inputs, outputs, attrs) {}
class NOP : public OperatorBase {
public:
using OperatorBase::OperatorBase;
std::unique_ptr<OperatorBase> Clone() const override {
return std::unique_ptr<OperatorBase>(new NOP(*this));
}
private:
void RunImpl(const Scope& scope,
const platform::Place& place) const override {}
};
class ExecutionContext {
public:
ExecutionContext(const OperatorBase& op, const Scope& scope,
const platform::DeviceContext& device_context)
: op_(op), scope_(scope), device_context_(device_context) {}
const OperatorBase& op() const { return op_; }
const Scope& scope() const { return scope_; }
template <typename T>
inline const T& Attr(const std::string& name) const {
return op_.Attr<T>(name);
}
size_t InputSize(const std::string& name) const {
return op_.Inputs(name).size();
}
size_t OutputSize(const std::string& name) const {
return op_.Outputs(name).size();
}
const Variable* InputVar(const std::string& name) const {
auto ipt = op_.Input(name);
return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
}
Variable* OutputVar(const std::string& name) const {
auto opt = op_.Output(name);
return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
}
const std::vector<const Variable*> MultiInputVar(
const std::string& name) const {
auto names = op_.Inputs(name);
std::vector<const Variable*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[this](const std::string& name) {
return name == kEmptyVarName ? nullptr
: scope_.FindVar(name);
});
return res;
}
std::vector<Variable*> MultiOutputVar(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<Variable*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[this](const std::string& name) {
return name == kEmptyVarName ? nullptr
: scope_.FindVar(name);
});
return res;
}
template <typename T>
const T* Input(const std::string& name) const {
auto* var = InputVar(name);
return var == nullptr ? nullptr : &var->Get<T>();
}
template <typename T>
T* Output(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : var->GetMutable<T>();
}
template <typename T>
const std::vector<const T*> MultiInput(const std::string& name) const {
auto names = op_.Inputs(name);
std::vector<const T*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr : &var->Get<T>();
});
return res;
}
template <typename T>
std::vector<T*> MultiOutput(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<T*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr : var->GetMutable<T>();
});
return res;
}
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const {
PADDLE_ENFORCE_LT(i, InputSize(in));
PADDLE_ENFORCE_LT(j, OutputSize(out));
auto* in_var = MultiInputVar(in)[i];
auto* out_var = MultiOutputVar(out)[j];
if (!in_var->IsType<LoDTensor>()) return;
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
"The %d-th output of Output(%s) must be LoDTensor.", j, out);
auto in_tensor = in_var->Get<LoDTensor>();
auto* out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->set_lod(in_tensor.lod());
}
platform::Place GetPlace() const { return device_context_.GetPlace(); }
template <typename DeviceContextType>
const DeviceContextType& device_context() const {
return *reinterpret_cast<const DeviceContextType*>(&device_context_);
}
const platform::DeviceContext& device_context() const {
return device_context_;
}
#ifdef PADDLE_WITH_CUDA
const inline platform::CUDADeviceContext& cuda_device_context() const {
PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
return *reinterpret_cast<const platform::CUDADeviceContext*>(
&device_context_);
}
#endif
//! Get actual name vector for this input.
const std::vector<std::string>& Inputs(const std::string& name) const {
return op_.Inputs(name);
}
//! Get actual name vector for this output.
const std::vector<std::string>& Outputs(const std::string& name) const {
return op_.Outputs(name);
}
private:
const OperatorBase& op_;
const Scope& scope_;
const platform::DeviceContext& device_context_;
};
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
const std::string& name) const;
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
const std::string& name) const;
class OpKernelBase {
public:
/**
* ExecutionContext is the only parameter of Kernel Run function.
* Run will get input/output variables, state such as momentum and
* device resource such as CUDA stream, cublas handle, etc. from
* ExecutionContext. User should construct it before run the Operator.
*/
virtual void Compute(const ExecutionContext& context) const = 0;
virtual ~OpKernelBase() = default;
};
template <typename T>
class OpKernel : public OpKernelBase {
public:
using ELEMENT_TYPE = T;
};
class OperatorWithKernel : public OperatorBase {
public:
using OpKernelMap =
std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
OpKernelType::Hash>;
OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
static std::unordered_map<std::string /* op_type */, OpKernelMap>&
AllOpKernels() {
static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
return g_all_op_kernels;
}
bool SupportGPU() const override {
auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
return std::any_of(op_kernels.begin(), op_kernels.end(),
[](OpKernelMap::const_reference kern_pair) {
return platform::is_gpu_place(kern_pair.first.place_);
});
}
virtual void InferShape(InferShapeContext* ctx) const {
OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
}
protected:
virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
virtual OpKernelType GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor,
const OpKernelType& expected_kernel_type) const;
private:
// indicate kernel DataType by input data. Defaultly all input data must be
// same.
proto::DataType IndicateDataType(const ExecutionContext& ctx) const;
void RunImpl(const Scope& scope, const platform::Place& place) const final;
};
extern bool OpSupportGPU(const std::string& op_type);
} // namespace framework
} // namespace paddle