1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import sys
# The legacy core need to be removed before "import core",
# in case of users installing paddlepadde without -U option
core_suffix = 'so'
if os.name == 'nt':
core_suffix = 'pyd'
legacy_core = os.path.abspath(os.path.dirname(
__file__)) + os.sep + 'core.' + core_suffix
if os.path.exists(legacy_core):
sys.stderr.write('Deleting legacy file ' + legacy_core + '\n')
try:
os.remove(legacy_core)
except Exception as e:
raise e
# import all class inside framework into fluid module
from . import framework
from .framework import *
# import all class inside executor into fluid module
from . import executor
from .executor import *
from . import data_feed_desc
from .data_feed_desc import *
from . import dataset
from .dataset import *
from .data import *
from . import trainer_desc
from . import io
from . import evaluator
from . import initializer
from .initializer import set_global_initializer
from . import layers
from . import dygraph
from . import contrib
from . import nets
from . import optimizer
from . import backward
from .backward import gradients
from . import regularizer
from . import average
from . import metrics
from . import transpiler
from . import incubate
from .input import embedding, one_hot
from . import distribute_lookup_table
from .param_attr import ParamAttr, WeightNormParamAttr
from .data_feeder import DataFeeder
from .core import LoDTensor, LoDTensorArray, CPUPlace, XPUPlace, CUDAPlace, CUDAPinnedPlace, Scope, _Scope
from .incubate import fleet
from .incubate import data_generator
from .transpiler import DistributeTranspiler, \
memory_optimize, release_memory, DistributeTranspilerConfig
from .lod_tensor import create_lod_tensor, create_random_int_lodtensor
from . import clip
from . import profiler
from . import unique_name
from . import parallel_executor
from .parallel_executor import *
from . import compiler
from .compiler import *
from paddle.fluid.layers.math_op_patch import monkey_patch_variable
from . import install_check
from .dygraph.nn import *
from .dygraph.layers import *
from .dygraph.base import enable_dygraph, disable_dygraph
from .io import save, load, load_program_state, set_program_state
from .dygraph.checkpoint import save_dygraph, load_dygraph
from .dygraph.varbase_patch_methods import monkey_patch_varbase
from . import generator
from .core import _cuda_synchronize
Tensor = LoDTensor
enable_imperative = enable_dygraph
disable_imperative = disable_dygraph
__all__ = framework.__all__ + executor.__all__ + \
trainer_desc.__all__ + transpiler.__all__ + \
parallel_executor.__all__ + lod_tensor.__all__ + \
data_feed_desc.__all__ + compiler.__all__ + backward.__all__ + generator.__all__ + [
'io',
'initializer',
'embedding',
'one_hot',
'layers',
'contrib',
'data',
'dygraph',
'enable_dygraph',
'disable_dygraph',
'enable_imperative',
'disable_imperative',
'transpiler',
'nets',
'optimizer',
'learning_rate_decay',
'backward',
'regularizer',
'LoDTensor',
'LoDTensorArray',
'CPUPlace',
'XPUPlace',
'CUDAPlace',
'CUDAPinnedPlace',
'Tensor',
'ParamAttr',
'WeightNormParamAttr',
'DataFeeder',
'clip',
'profiler',
'unique_name',
'Scope',
'install_check',
'save',
'load',
'VarBase',
'_cuda_synchronize'
]
def __bootstrap__():
"""
Enable reading gflags from environment variables.
Returns:
None
"""
import sys
import os
import platform
from . import core
# NOTE(zhiqiu): When (1)numpy < 1.19; (2) python < 3.7,
# unittest is always imported in numpy (maybe some versions not).
# so is_test is True and p2p is not inited.
in_test = 'unittest' in sys.modules
try:
num_threads = int(os.getenv('OMP_NUM_THREADS', '1'))
except ValueError:
num_threads = 1
if num_threads > 1:
print(
'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation '
'speed will not be optimized if you use data parallel. It will '
'fail if this PaddlePaddle binary is compiled with OpenBlas since'
' OpenBlas does not support multi-threads.'.format(num_threads),
file=sys.stderr)
print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr)
os.environ['OMP_NUM_THREADS'] = str(num_threads)
sysstr = platform.system()
read_env_flags = [
'check_nan_inf',
'benchmark',
'eager_delete_scope',
'fraction_of_cpu_memory_to_use',
'initial_cpu_memory_in_mb',
'init_allocated_mem',
'paddle_num_threads',
'dist_threadpool_size',
'eager_delete_tensor_gb',
'fast_eager_deletion_mode',
'memory_fraction_of_eager_deletion',
'allocator_strategy',
'reader_queue_speed_test_mode',
'print_sub_graph_dir',
'pe_profile_fname',
'inner_op_parallelism',
'enable_parallel_graph',
'fuse_parameter_groups_size',
'multiple_of_cupti_buffer_size',
'fuse_parameter_memory_size',
'tracer_profile_fname',
'dygraph_debug',
'use_system_allocator',
'enable_unused_var_check',
'free_idle_chunk',
'free_when_no_cache_hit',
'call_stack_level',
'sort_sum_gradient',
'max_inplace_grad_add',
]
if 'Darwin' not in sysstr:
read_env_flags.append('use_pinned_memory')
if os.name != 'nt':
read_env_flags.append('cpu_deterministic')
if core.is_compiled_with_mkldnn():
read_env_flags.append('use_mkldnn')
read_env_flags.append('tracer_mkldnn_ops_on')
read_env_flags.append('tracer_mkldnn_ops_off')
if core.is_compiled_with_cuda():
read_env_flags += [
'fraction_of_gpu_memory_to_use',
'initial_gpu_memory_in_mb',
'reallocate_gpu_memory_in_mb',
'cudnn_deterministic',
'enable_cublas_tensor_op_math',
'conv_workspace_size_limit',
'cudnn_exhaustive_search',
'selected_gpus',
'sync_nccl_allreduce',
'cudnn_batchnorm_spatial_persistent',
'gpu_allocator_retry_time',
'local_exe_sub_scope_limit',
'gpu_memory_limit_mb',
'conv2d_disable_cudnn',
]
core.init_gflags(["--tryfromenv=" + ",".join(read_env_flags)])
core.init_glog(sys.argv[0])
# don't init_p2p when in unittest to save time.
core.init_devices()
# TODO(panyx0718): Avoid doing complex initialization logic in __init__.py.
# Consider paddle.init(args) or paddle.main(args)
monkey_patch_variable()
__bootstrap__()
monkey_patch_varbase()