cudnn_helper.h 16.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
Y
Pass CI  
Yu Yang 已提交
18
#include <vector>
19 20

#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
23
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
25

D
dzhwinter 已提交
26 27
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
28 29 30
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

D
"fix"  
dzhwinter 已提交
63 64 65 66
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
67
  kNDHWC,  // add, liyamei
D
"fix"  
dzhwinter 已提交
68 69 70 71 72 73
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
74 75
  kAverageExclusive,
  kAverageInclusive,
D
"fix"  
dzhwinter 已提交
76 77
};

78
enum class ActivationMode {
Q
qingqing01 已提交
79 80 81 82 83 84 85 86 87
  kNone,  // activation identity
  kSigmoid,
  kRelu,
  kRelu6,
  kReluX,
  kTanh,
  kBandPass,
};

D
"done"  
dzhwinter 已提交
88 89 90 91 92 93
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
94

D
dzhwinter 已提交
95 96 97 98
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
99
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
100
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
101 102
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
103 104 105 106 107 108 109
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
110

D
dzhwinter 已提交
111 112 113 114
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
115
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
116
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
117 118
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
119 120 121 122 123 124
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
125 126
#endif  // CUDNN_VERSION < 6000

Q
qingqing01 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
inline ActivationMode StringToActivationMode(const std::string& str) {
  if (str == "identity") {
    return ActivationMode::kNone;
  } else if (str == "sigmoid") {
    return ActivationMode::kSigmoid;
  } else if (str == "relu") {
    return ActivationMode::kRelu;
  } else if (str == "relu6") {
    return ActivationMode::kRelu6;
  } else if (str == "relux") {
    return ActivationMode::kReluX;
  } else if (str == "tanh") {
    return ActivationMode::kTanh;
  } else if (str == "bandpass") {
    return ActivationMode::kBandPass;
  } else {
    PADDLE_THROW("Unknown activation string: %s", str);
  }
}

D
dangqingqing 已提交
147 148 149
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
150 151 152 153
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
154
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
155 156
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
157
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
158
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
159 160 161
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
162
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
163 164 165 166
    return &v;
  }
};

D
dangqingqing 已提交
167 168 169 170
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
171 172
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
173 174 175 176 177 178 179 180
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
181 182 183 184 185 186
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
187 188
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
189 190 191 192 193 194 195 196
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
197 198
};

C
chengduoZH 已提交
199 200
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
201 202 203 204 205
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
206
    case DataLayout::kNCDHW:
武毅 已提交
207
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
208 209
    case DataLayout::kNDHWC:
      return CUDNN_TENSOR_NHWC;  // add, liyamei
D
dangqingqing 已提交
210 211 212 213 214 215 216 217 218
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
219
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&desc_));
D
dangqingqing 已提交
220
  }
Z
Zeng Jinle 已提交
221
  ~ScopedTensorDescriptor() PADDLE_MAY_THROW {
222
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(desc_));
D
dangqingqing 已提交
223 224 225 226
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
227 228 229
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
230 231
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
232 233
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
234
    }
武毅 已提交
235
    // Update tensor descriptor dims setting if groups > 1
236 237
    // NOTE: Here, Assume using NCHW or NCDHW order
    std::vector<int> dims_with_group(dims.begin(), dims.end());
武毅 已提交
238 239 240
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

    if (dims.size() == 4) {
      if (format == CUDNN_TENSOR_NCHW) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
            desc_, type, dims_with_group.size(), dims_with_group.data(),
            strides.data()));
      } else {  // CUDNN_TENSOR_NHWC
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensor4dDescriptor(
            desc_, format, type, dims[0], dims[3], dims[1], dims[2]));
      }
    } else if (dims.size() == 5) {
      if (format == CUDNN_TENSOR_NCHW) {
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
            desc_, type, dims_with_group.size(), dims_with_group.data(),
            strides.data()));
      } else {  // CUDNN_TENSOR_NHWC
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
            desc_, format, type, dims.size(), dims.data()));
      }
    }
D
dangqingqing 已提交
261 262 263 264 265
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
266 267 268 269
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
270 271 272 273 274 275 276 277 278 279
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
280
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&desc_));
D
dangqingqing 已提交
281
  }
Z
Zeng Jinle 已提交
282
  ~ScopedFilterDescriptor() PADDLE_MAY_THROW {
283
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(desc_));
D
dangqingqing 已提交
284 285 286 287
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
288 289
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
290
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
291
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
292 293
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
294 295 296 297 298
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
299
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
300 301
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
302 303 304 305 306
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
307 308
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
309
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
310
                      kernel, groups);
D
dangqingqing 已提交
311 312 313 314 315 316 317 318 319 320
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
321 322
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateConvolutionDescriptor(&desc_));
D
dangqingqing 已提交
323
  }
Z
Zeng Jinle 已提交
324
  ~ScopedConvolutionDescriptor() PADDLE_MAY_THROW {
325 326
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyConvolutionDescriptor(desc_));
D
dangqingqing 已提交
327 328 329 330 331 332 333
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
334

335
#if !CUDNN_VERSION_MIN(6, 0, 0)
336 337 338 339 340
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
341 342 343
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
344 345 346
    }
#endif

K
Kexin Zhao 已提交
347 348
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
349
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
350
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
351
        CUDNN_CROSS_CORRELATION, compute_type));
352
    return desc_;
D
dangqingqing 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
370
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreatePoolingDescriptor(&desc_));
D
dangqingqing 已提交
371
  }
Z
Zeng Jinle 已提交
372
  ~ScopedPoolingDescriptor() PADDLE_MAY_THROW {
373
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyPoolingDescriptor(desc_));
D
dangqingqing 已提交
374 375 376 377 378 379 380 381
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
382
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
383
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
384 385
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
386
    return desc_;
D
dangqingqing 已提交
387 388 389 390 391 392 393
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

W
whs 已提交
394 395 396
class ScopedSpatialTransformerDescriptor {
 public:
  ScopedSpatialTransformerDescriptor() {
397 398
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
W
whs 已提交
399
  }
Z
Zeng Jinle 已提交
400
  ~ScopedSpatialTransformerDescriptor() PADDLE_MAY_THROW {
401 402
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
W
whs 已提交
403 404 405 406 407
  }

  template <typename T>
  inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
                                                        const int dimA[]) {
408
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetSpatialTransformerNdDescriptor(
W
whs 已提交
409 410 411 412 413 414 415 416 417
        desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
    return desc_;
  }

 private:
  cudnnSpatialTransformerDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};

Q
qingqing01 已提交
418 419 420
class ScopedActivationDescriptor {
 public:
  ScopedActivationDescriptor() {
421 422
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateActivationDescriptor(&desc_));
Q
qingqing01 已提交
423
  }
Z
Zeng Jinle 已提交
424
  ~ScopedActivationDescriptor() PADDLE_MAY_THROW {
425 426
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnDestroyActivationDescriptor(desc_));
Q
qingqing01 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  }

  template <typename T>
  inline cudnnActivationDescriptor_t descriptor(
      const std::string& act, double value_max = static_cast<double>(0.)) {
    double relu_ceiling = 0.0;
    ActivationMode activation_mode = StringToActivationMode(act);
    cudnnActivationMode_t mode;
    switch (activation_mode) {
#if CUDNN_VERSION >= 7100
      case ActivationMode::kNone:
        mode = CUDNN_ACTIVATION_IDENTITY;
        break;
#endif
      case ActivationMode::kRelu6:
        relu_ceiling = 6.0;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kReluX:
        relu_ceiling = value_max;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kRelu:
        mode = CUDNN_ACTIVATION_RELU;
        break;
      case ActivationMode::kSigmoid:
        mode = CUDNN_ACTIVATION_SIGMOID;
        break;
      case ActivationMode::kTanh:
        mode = CUDNN_ACTIVATION_TANH;
        break;
      default:
        PADDLE_THROW("unrecognized activation mode: %d .",
                     static_cast<int>(activation_mode));
    }
462
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetActivationDescriptor(
Q
qingqing01 已提交
463 464 465 466 467 468 469 470 471
        desc_, mode, CUDNN_NOT_PROPAGATE_NAN, relu_ceiling));
    return desc_;
  }

 private:
  cudnnActivationDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
};

472 473 474 475 476
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (use_cudnn) {
477
    auto& dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
478 479 480 481 482 483
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  return use_cudnn;
}

W
Wu Yi 已提交
484 485 486 487
#if CUDNN_VERSION >= 7001
class ScopedCTCLossDescriptor {
 public:
  ScopedCTCLossDescriptor() {
488
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateCTCLossDescriptor(&desc_));
W
Wu Yi 已提交
489
  }
Z
Zeng Jinle 已提交
490
  ~ScopedCTCLossDescriptor() PADDLE_MAY_THROW {
491
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyCTCLossDescriptor(desc_));
W
Wu Yi 已提交
492 493 494 495
  }

  template <typename T>
  inline cudnnCTCLossDescriptor_t descriptor() {
496
    PADDLE_ENFORCE_CUDA_SUCCESS(
W
Wu Yi 已提交
497 498 499 500 501 502 503 504 505 506
        dynload::cudnnSetCTCLossDescriptor(desc_, CudnnDataType<T>::type));
    return desc_;
  }

 private:
  cudnnCTCLossDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
};
#endif

D
dangqingqing 已提交
507 508
}  // namespace platform
}  // namespace paddle