ps_gpu_trainer.cc 14.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cstdlib>
#include <string>
#include <vector>
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/fleet/heter_context.h"
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/framework/trainer.h"
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
#include "paddle/fluid/platform/cuda_device_guard.h"

namespace paddle {
namespace framework {

void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
                              Dataset* dataset) {
  dataset_ = dataset;
  thread_num_ = trainer_desc.thread_num();
  param_ = trainer_desc.downpour_param();
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  const std::vector<paddle::framework::DataFeed*> readers =
      dataset->GetReaders();
  std::vector<int> dev_ids;
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
    dev_ids.push_back(num);
  }
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  VLOG(3) << "going to initialize pull dense worker";
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
  SetDebug(trainer_desc.debug());
  fleet_ptr_ = FleetWrapper::GetInstance();
  trainer_desc_ = trainer_desc;
  workers_.resize(place_num);
  for (int i = 0; i < place_num; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
    workers_[i]->SetDataFeed(readers[i]);
    workers_[i]->Initialize(trainer_desc);
    workers_[i]->SetWorkerNum(place_num);
  }
  return;
}

void PSGPUTrainer::DumpWork(int tid) {}

void PSGPUTrainer::RegisterHeterCallback() {
  /*
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
  */
}

void PSGPUTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  for (size_t num = 0; num < places_.size(); ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
  place_ = place;
  return;
}

void PSGPUTrainer::InitOtherEnv(const ProgramDesc& main_program) {
  pull_dense_worker_->SetRootScope(root_scope_);
  for (size_t i = 0; i < places_.size(); ++i) {
    pull_dense_worker_->AddThreadScope(workers_[i]->GetThreadScope());
  }
  VLOG(3) << "init other env done.";
}

void PSGPUTrainer::Run() {
  BuildGPUPSTask(0, 8);
  for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
    threads_.push_back(
        std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
  }
}
void PSGPUTrainer::BuildGPUPSTask(int table_id, int feadim) {
  VLOG(3) << "PSGPUTrainer::BuildGPUPSTask begin";
  platform::Timer timeline;
  timeline.Start();
  MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shared_ptr<HeterContext> heter_context =
      std::make_shared<HeterContext>();
  auto& multi_output_channel = dataset->GetCurOutputChannel();
  auto& input_channel = dataset->GetInputChannelRef();
  int gen_shard_num = multi_output_channel.size();
  int device_num = places_.size();
  auto gpu_ps_wrapper = PSGPUWrapper::GetInstance();
  auto& local_keys = heter_context->feature_keys_;
  local_keys.resize(device_num);
  auto& local_values = heter_context->feature_values_;
  local_values.resize(device_num);
  auto& local_ptr = heter_context->value_ptr_;
  local_ptr.resize(device_num);
  for (auto& ks : local_keys) {
    ks.reserve(100000);
  }
  // read thread
  std::vector<std::thread> threads(gen_shard_num);
  std::vector<std::shared_ptr<ThreadPool>> consume_task_pool(device_num);
  for (size_t i = 0; i < consume_task_pool.size(); i++) {
    consume_task_pool[i].reset(new ::ThreadPool(1));
  }
  auto consume_func = [&local_keys](int shard_id, int feadim,
                                    std::vector<uint64_t>& keys) {
    local_keys[shard_id].insert(local_keys[shard_id].end(), keys.begin(),
                                keys.end());
  };

  if (input_channel->Size() == 0) {
    // output_channel_ should hold one pass instances now
    uint64_t output_channels_data_size = 0;
    for (size_t i = 0; i < multi_output_channel.size(); i++) {
      int cur_channel_size = multi_output_channel[i]->Size();
      output_channels_data_size += cur_channel_size;
    }
    CHECK(output_channels_data_size > 0);
    for (auto& ks : local_keys) {
      ks.reserve(output_channels_data_size * 10);  // magic number
    }
    auto gen_func = [&dataset, &device_num, &feadim, &consume_task_pool,
                     &multi_output_channel, &consume_func](int i) {
      const std::deque<Record>& vec_data = multi_output_channel[i]->GetData();
      std::vector<std::vector<uint64_t>> task_keys(device_num);
      std::vector<std::future<void>> task_futures;
      for (size_t j = 0; j < vec_data.size(); j++) {
        for (auto& feature : vec_data[j].uint64_feasigns_) {
          int shard = feature.sign().uint64_feasign_ % device_num;
          task_keys[shard].push_back(feature.sign().uint64_feasign_);
        }
      }

      for (int shard_id = 0; shard_id < device_num; shard_id++) {
        task_futures.emplace_back(consume_task_pool[shard_id]->enqueue(
            consume_func, shard_id, feadim, task_keys[shard_id]));
      }

      for (auto& tf : task_futures) {
        tf.wait();
      }
      for (auto& tk : task_keys) {
        tk.clear();
        std::vector<uint64_t>().swap(tk);
      }
      task_keys.clear();
      std::vector<std::vector<uint64_t>>().swap(task_keys);
    };
    for (size_t i = 0; i < threads.size(); i++) {
      threads[i] = std::thread(gen_func, i);
    }
    for (std::thread& t : threads) {
      t.join();
    }
  } else {
    int input_channel_size = input_channel->Size();
    CHECK(input_channel_size > 0);
    CHECK(gen_shard_num > 0);
    for (auto& ks : local_keys) {
      ks.reserve(input_channel_size * 10);  // magic number
    }
    const std::deque<Record>& vec_data = input_channel->GetData();
    auto gen_func = [&dataset, &vec_data, &device_num, &gen_shard_num,
                     &input_channel_size, &feadim, &consume_task_pool,
                     multi_output_channel, &consume_func](int i) {
      std::vector<std::vector<uint64_t>> task_keys(device_num);
      std::vector<std::future<void>> task_futures;
      size_t per_shard_num = input_channel_size / gen_shard_num + 1;
      size_t total_size = vec_data.size();
      size_t start_index = i * per_shard_num;
      size_t end_index =
          std::min(start_index + per_shard_num - 1, total_size - 1);
      for (size_t j = start_index; j <= end_index; j++) {
        for (auto& feature : vec_data[j].uint64_feasigns_) {
          int shard = feature.sign().uint64_feasign_ % device_num;
          task_keys[shard].push_back(feature.sign().uint64_feasign_);
        }
      }

      for (int shard_id = 0; shard_id < device_num; shard_id++) {
        task_futures.emplace_back(consume_task_pool[shard_id]->enqueue(
            consume_func, shard_id, feadim, task_keys[shard_id]));
      }

      for (auto& tf : task_futures) {
        tf.wait();
      }
      for (auto& tk : task_keys) {
        tk.clear();
        std::vector<uint64_t>().swap(tk);
      }
      task_keys.clear();
      std::vector<std::vector<uint64_t>>().swap(task_keys);
    };
    for (size_t i = 0; i < threads.size(); i++) {
      threads[i] = std::thread(gen_func, i);
    }
    for (std::thread& t : threads) {
      t.join();
    }
  }
  timeline.Pause();
  VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
  timeline.Start();
  auto unique_func = [&local_keys](int i) {
    auto& cur_keys = local_keys[i];
    std::sort(cur_keys.begin(), cur_keys.end());
    cur_keys.erase(std::unique(cur_keys.begin(), cur_keys.end()),
                   cur_keys.end());
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(unique_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();

  VLOG(0) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";

  timeline.Start();
  for (size_t i = 0; i < consume_task_pool.size(); i++) {
    consume_task_pool[i].reset();
  }
  consume_task_pool.clear();

  for (int i = 0; i < device_num; i++) {
    local_values[i].resize(local_keys[i].size());
    local_ptr[i].resize(local_keys[i].size());
  }

  auto ptl_func = [this, &local_keys, &local_values, &local_ptr, &table_id,
                   &fleet_ptr](int i) {
    size_t key_size = local_keys[i].size();
    auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
        (char**)(local_ptr[i].data()), table_id, local_keys[i].data(),
        key_size);
    tt.wait();
    auto status = tt.get();
    // auto status = 0;
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
    for (size_t num = 0; num < local_ptr[i].size(); ++num) {
      float* ptr_val = local_ptr[i][num]->data();
      FeatureValue& val = local_values[i][num];
      size_t dim = local_ptr[i][num]->size();

      val.delta_score = ptr_val[1];
      val.show = ptr_val[2];
      val.clk = ptr_val[3];
      val.slot = ptr_val[6];
      val.lr = ptr_val[4];
      val.lr_g2sum = ptr_val[5];

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
        }
      }
    }
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(ptl_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
  VLOG(0) << "GpuPs pull sparse cost " << timeline.ElapsedSec() << " seconds.";
  gpu_ps_wrapper->BuildGPUPS(table_id, feadim, heter_context);
}

Scope* PSGPUTrainer::GetWorkerScope(int thread_id) { return nullptr; }

template <typename T>
void PSGPUTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

void PSGPUTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

    for (size_t j = 0; j < places_.size(); j++) {
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
  pull_dense_worker_->MergeDenseParam();
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif