ps_gpu_wrapper.cc 14.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
/*
#include <algorithm>
#include <utility>
#include "paddle/fluid/framework/io/fs.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
*/
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;

46 47 48
void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task,
                             uint64_t table_id, int feature_dim) {
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
49 50
  platform::Timer timeline;
  timeline.Start();
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  int device_num = heter_devices_.size();
  MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
  gpu_task->init(thread_keys_shard_num_, device_num);
  auto input_channel = dataset->GetInputChannel();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
  auto& device_mutex = gpu_task->mutex_;

  std::vector<std::thread> threads;
  auto fleet_ptr = FleetWrapper::GetInstance();

  // data should be in input channel
  thread_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_keys_[i].resize(thread_keys_shard_num_);
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      thread_keys_[i][j].reserve(2 * max_fea_num_per_pass_ /
                                 thread_keys_shard_num_ /
                                 thread_keys_thread_num_);
    }
  }
  const std::deque<Record>& vec_data = input_channel->GetData();
  size_t total_len = vec_data.size();
  size_t len_per_thread = total_len / thread_keys_thread_num_;
  int remain = total_len % thread_keys_thread_num_;
  size_t begin = 0;
  auto gen_func = [this](const std::deque<Record>& total_data, int begin_index,
                         int end_index, int i) {
    for (auto iter = total_data.begin() + begin_index;
         iter != total_data.begin() + end_index; iter++) {
      const auto& ins = *iter;
      const auto& feasign_v = ins.uint64_feasigns_;
      for (const auto feasign : feasign_v) {
        uint64_t cur_key = feasign.sign().uint64_feasign_;
        int shard_id = cur_key % thread_keys_shard_num_;
        this->thread_keys_[i][shard_id].push_back(cur_key);
      }
    }
  };
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    threads.push_back(std::thread(gen_func, std::ref(vec_data), begin,
                                  begin + len_per_thread + (i < remain ? 1 : 0),
                                  i));
    begin += len_per_thread + (i < remain ? 1 : 0);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
  VLOG(1) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";

  timeline.Start();

  // merge thread_keys to shard_keys
  for (size_t i = 0; i < thread_keys_.size(); i++) {
    gpu_task->batch_add_keys(thread_keys_[i]);
    for (int j = 0; j < thread_keys_thread_num_; j++) {
      thread_keys_[i][j].clear();
    }
  }
  timeline.Pause();

  VLOG(1) << "GpuPs task unique11111 cost " << timeline.ElapsedSec()
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

  VLOG(1) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";

  for (int i = 0; i < thread_keys_shard_num_; i++) {
    VLOG(3) << "GpuPs shard: " << i << " key len: " << local_keys[i].size();
    local_ptr[i].resize(local_keys[i].size());
  }

  auto ptl_func = [this, &local_keys, &local_ptr, &table_id,
                   &fleet_ptr](int i) {
    size_t key_size = local_keys[i].size();
    auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
        reinterpret_cast<char**>(local_ptr[i].data()), table_id,
        local_keys[i].data(), key_size);
    tt.wait();
    auto status = tt.get();
    // auto status = 0;
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(ptl_func, i);
T
Thunderbrook 已提交
149
  }
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
  VLOG(1) << "GpuPs pull sparse cost " << timeline.ElapsedSec() << " seconds.";

  timeline.Start();
  auto build_func = [device_num, &local_keys, &local_ptr, &device_keys,
                     &device_vals, &device_mutex](int i) {
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }

    for (int dev = 0; dev < device_num; dev++) {
      device_mutex[dev]->lock();

      int len = task_keys[dev].size();
      int cur = device_keys[dev].size();
      device_keys[dev].resize(device_keys[dev].size() + len);
      device_vals[dev].resize(device_vals[dev].size() + len);

      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        float* ptr_val = task_ptrs[dev][j]->data();
        FeatureValue& val = device_vals[dev][cur + j];
        size_t dim = task_ptrs[dev][j]->size();

        val.delta_score = ptr_val[1];
        val.show = ptr_val[2];
        val.clk = ptr_val[3];
        val.slot = ptr_val[6];
        val.lr = ptr_val[4];
        val.lr_g2sum = ptr_val[5];
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

        if (dim > 7) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val[x + 7];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
        }
      }
T
Thunderbrook 已提交
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
      device_mutex[dev]->unlock();
    }
  };

  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
  VLOG(1) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
          << " seconds.";
}

void PSGPUWrapper::BuildGPUPS(uint64_t table_id, int feature_dim) {
  int device_num = heter_devices_.size();
  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  BuildTask(gpu_task, table_id, feature_dim);
  platform::Timer timeline;
  timeline.Start();

  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
227
  size_t size_max = 0;
228 229
  for (int i = 0; i < device_num; i++) {
    feature_keys_count[i] = gpu_task->device_keys_[i].size();
T
Thunderbrook 已提交
230 231 232 233 234 235
    size_max = std::max(size_max, feature_keys_count[i]);
  }
  if (HeterPs_) {
    HeterPs_->show_one_table(0);
    return;
  }
236
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
237
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
238 239
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
  auto build_func = [this, &gpu_task, &feature_keys_count](int i) {
T
Thunderbrook 已提交
240
    std::cout << "building table: " << i << std::endl;
241 242 243
    this->HeterPs_->build_ps(i, gpu_task->device_keys_[i].data(),
                             gpu_task->device_values_[i].data(),
                             feature_keys_count[i], 500000, 2);
T
Thunderbrook 已提交
244
    HeterPs_->show_one_table(i);
245 246 247 248 249 250
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
251 252
  }
  timeline.Pause();
253
  VLOG(1) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
          << " s.";
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf = memory::AllocShared(place, total_length * sizeof(FeatureValue));
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::AllocShared(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
  VLOG(1) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin GPUPS PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf =
      memory::AllocShared(place, total_length * sizeof(FeaturePushValue));
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
  VLOG(1) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif