test_imperative_qat.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

from __future__ import print_function

import os
import numpy as np
import random
import unittest
import logging
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import AdamOptimizer
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.dygraph.container import Sequential
from paddle.fluid.dygraph.nn import Conv2D
from paddle.fluid.dygraph.nn import Pool2D
from paddle.fluid.dygraph.nn import Linear
from paddle.fluid.log_helper import get_logger

os.environ["CPU_NUM"] = "1"
if core.is_compiled_with_cuda():
    fluid.set_flags({"FLAGS_cudnn_deterministic": True})

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


def StaticLenet(data, num_classes=10, classifier_activation='softmax'):
    conv2d_w1_attr = fluid.ParamAttr(name="conv2d_w_1")
    conv2d_w2_attr = fluid.ParamAttr(name="conv2d_w_2")
    fc_w1_attr = fluid.ParamAttr(name="fc_w_1")
    fc_w2_attr = fluid.ParamAttr(name="fc_w_2")
    fc_w3_attr = fluid.ParamAttr(name="fc_w_3")
    conv2d_b1_attr = fluid.ParamAttr(name="conv2d_b_1")
    conv2d_b2_attr = fluid.ParamAttr(name="conv2d_b_2")
    fc_b1_attr = fluid.ParamAttr(name="fc_b_1")
    fc_b2_attr = fluid.ParamAttr(name="fc_b_2")
    fc_b3_attr = fluid.ParamAttr(name="fc_b_3")
    conv1 = fluid.layers.conv2d(
        data,
        num_filters=6,
        filter_size=3,
        stride=1,
        padding=1,
        param_attr=conv2d_w1_attr,
        bias_attr=conv2d_b1_attr)
    pool1 = fluid.layers.pool2d(
        conv1, pool_size=2, pool_type='max', pool_stride=2)
    conv2 = fluid.layers.conv2d(
        pool1,
        num_filters=16,
        filter_size=5,
        stride=1,
        padding=0,
        param_attr=conv2d_w2_attr,
        bias_attr=conv2d_b2_attr)
    pool2 = fluid.layers.pool2d(
        conv2, pool_size=2, pool_type='max', pool_stride=2)

    fc1 = fluid.layers.fc(input=pool2,
                          size=120,
                          param_attr=fc_w1_attr,
                          bias_attr=fc_b1_attr)
    fc2 = fluid.layers.fc(input=fc1,
                          size=84,
                          param_attr=fc_w2_attr,
                          bias_attr=fc_b2_attr)
    fc3 = fluid.layers.fc(input=fc2,
                          size=num_classes,
                          act=classifier_activation,
                          param_attr=fc_w3_attr,
                          bias_attr=fc_b3_attr)

    return fc3


class ImperativeLenet(fluid.dygraph.Layer):
    def __init__(self, num_classes=10, classifier_activation='softmax'):
        super(ImperativeLenet, self).__init__()
        conv2d_w1_attr = fluid.ParamAttr(name="conv2d_w_1")
        conv2d_w2_attr = fluid.ParamAttr(name="conv2d_w_2")
        fc_w1_attr = fluid.ParamAttr(name="fc_w_1")
        fc_w2_attr = fluid.ParamAttr(name="fc_w_2")
        fc_w3_attr = fluid.ParamAttr(name="fc_w_3")
        conv2d_b1_attr = fluid.ParamAttr(name="conv2d_b_1")
        conv2d_b2_attr = fluid.ParamAttr(name="conv2d_b_2")
        fc_b1_attr = fluid.ParamAttr(name="fc_b_1")
        fc_b2_attr = fluid.ParamAttr(name="fc_b_2")
        fc_b3_attr = fluid.ParamAttr(name="fc_b_3")
        self.features = Sequential(
            Conv2D(
                num_channels=1,
                num_filters=6,
                filter_size=3,
                stride=1,
                padding=1,
                param_attr=conv2d_w1_attr,
                bias_attr=conv2d_b1_attr),
            Pool2D(
                pool_size=2, pool_type='max', pool_stride=2),
            Conv2D(
                num_channels=6,
                num_filters=16,
                filter_size=5,
                stride=1,
                padding=0,
                param_attr=conv2d_w2_attr,
                bias_attr=conv2d_b2_attr),
            Pool2D(
                pool_size=2, pool_type='max', pool_stride=2))

        self.fc = Sequential(
            Linear(
                input_dim=400,
                output_dim=120,
                param_attr=fc_w1_attr,
                bias_attr=fc_b1_attr),
            Linear(
                input_dim=120,
                output_dim=84,
                param_attr=fc_w2_attr,
                bias_attr=fc_b2_attr),
            Linear(
                input_dim=84,
                output_dim=num_classes,
                act=classifier_activation,
                param_attr=fc_w3_attr,
                bias_attr=fc_b3_attr))

    def forward(self, inputs):
        x = self.features(inputs)

        x = fluid.layers.flatten(x, 1)
        x = self.fc(x)
        return x


class TestImperativeQat(unittest.TestCase):
    """
    QAT = quantization-aware training
    """

    def test_qat_save(self):
        imperative_qat = ImperativeQuantAware(
            weight_quantize_type='abs_max',
            activation_quantize_type='moving_average_abs_max')

        with fluid.dygraph.guard():
            lenet = ImperativeLenet()
            imperative_qat.quantize(lenet)
            adam = AdamOptimizer(
                learning_rate=0.001, parameter_list=lenet.parameters())
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=32, drop_last=True)
            test_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=32)

            epoch_num = 1
            for epoch in range(epoch_num):
                lenet.train()
                for batch_id, data in enumerate(train_reader()):
                    x_data = np.array([x[0].reshape(1, 28, 28)
                                       for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(-1, 1)

                    img = fluid.dygraph.to_variable(x_data)
                    label = fluid.dygraph.to_variable(y_data)

                    out = lenet(img)
                    acc = fluid.layers.accuracy(out, label)
                    loss = fluid.layers.cross_entropy(out, label)
                    avg_loss = fluid.layers.mean(loss)
                    avg_loss.backward()
                    adam.minimize(avg_loss)
                    lenet.clear_gradients()
                    if batch_id % 100 == 0:
                        _logger.info(
                            "Train | At epoch {} step {}: loss = {:}, acc= {:}".
                            format(epoch, batch_id,
                                   avg_loss.numpy(), acc.numpy()))

                lenet.eval()
                for batch_id, data in enumerate(test_reader()):
                    x_data = np.array([x[0].reshape(1, 28, 28)
                                       for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(-1, 1)

                    img = fluid.dygraph.to_variable(x_data)
                    label = fluid.dygraph.to_variable(y_data)

                    out = lenet(img)
                    acc_top1 = fluid.layers.accuracy(
                        input=out, label=label, k=1)
                    acc_top5 = fluid.layers.accuracy(
                        input=out, label=label, k=5)

                    if batch_id % 100 == 0:
                        _logger.info(
                            "Test | At epoch {} step {}: acc1 = {:}, acc5 = {:}".
                            format(epoch, batch_id,
                                   acc_top1.numpy(), acc_top5.numpy()))

            # save weights
            model_dict = lenet.state_dict()
            fluid.save_dygraph(model_dict, "save_temp")

            # test the correctness of `save_quantized_model`
            data = next(test_reader())
            test_data = np.array([x[0].reshape(1, 28, 28)
                                  for x in data]).astype('float32')
            test_img = fluid.dygraph.to_variable(test_data)
            lenet.eval()
            before_save = lenet(test_img)

        # save inference quantized model
        path = "./mnist_infer_model"
        imperative_qat.save_quantized_model(
            dirname=path,
            model=lenet,
            input_shape=[(1, 28, 28)],
            input_dtype=['float32'],
            feed=[0],
            fetch=[0])
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        [inference_program, feed_target_names, fetch_targets] = (
            fluid.io.load_inference_model(
                dirname=path, executor=exe))
        after_save, = exe.run(inference_program,
                              feed={feed_target_names[0]: test_data},
                              fetch_list=fetch_targets)

        self.assertTrue(
            np.allclose(after_save, before_save.numpy()),
            msg='Failed to save the inference quantized model.')


if __name__ == '__main__':
    unittest.main()