test_imperative_ptq.py 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

from __future__ import print_function

import os
import numpy as np
import random
import shutil
import time
import unittest
23
import copy
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
import logging

import paddle
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization import *
from paddle.fluid.log_helper import get_logger
from paddle.dataset.common import download

from imperative_test_utils import fix_model_dict, ImperativeLenet

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class TestImperativePTQ(unittest.TestCase):
    """
    """

    @classmethod
    def setUpClass(cls):
        timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
        cls.root_path = os.path.join(os.getcwd(), "imperative_ptq_" + timestamp)
        cls.save_path = os.path.join(cls.root_path, "model")

        cls.download_path = 'dygraph_int8/download'
        cls.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
                                              cls.download_path)

        cls.lenet_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/lenet_pretrained.tar.gz"
        cls.lenet_md5 = "953b802fb73b52fae42896e3c24f0afb"

        seed = 1
        np.random.seed(seed)
        paddle.static.default_main_program().random_seed = seed
        paddle.static.default_startup_program().random_seed = seed

    @classmethod
    def tearDownClass(cls):
        try:
63 64
            pass
            # shutil.rmtree(cls.root_path)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        except Exception as e:
            print("Failed to delete {} due to {}".format(cls.root_path, str(e)))

    def cache_unzipping(self, target_folder, zip_path):
        if not os.path.exists(target_folder):
            cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
                                                          zip_path)
            os.system(cmd)

    def download_model(self, data_url, data_md5, folder_name):
        download(data_url, self.download_path, data_md5)
        file_name = data_url.split('/')[-1]
        zip_path = os.path.join(self.cache_folder, file_name)
        print('Data is downloaded at {0}'.format(zip_path))

        data_cache_folder = os.path.join(self.cache_folder, folder_name)
        self.cache_unzipping(data_cache_folder, zip_path)
        return data_cache_folder

    def set_vars(self):
        self.ptq = ImperativePTQ(default_ptq_config)

        self.batch_num = 10
        self.batch_size = 10
89
        self.eval_acc_top1 = 0.95
90

91
        # the input, output and weight thresholds of quantized op
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        self.gt_thresholds = {
            'conv2d_0': [[1.0], [0.37673383951187134], [0.10933732241392136]],
            'batch_norm2d_0': [[0.37673383951187134], [0.44249194860458374]],
            're_lu_0': [[0.44249194860458374], [0.25804123282432556]],
            'max_pool2d_0': [[0.25804123282432556], [0.25804123282432556]],
            'linear_0':
            [[1.7058950662612915], [14.405526161193848], [0.4373355209827423]],
            'add_0': [[1.7058950662612915, 0.0], [1.7058950662612915]],
        }

    def model_test(self, model, batch_num=-1, batch_size=8):
        model.eval()

        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)

        eval_acc_top1_list = []
        for batch_id, data in enumerate(test_reader()):
            x_data = np.array([x[0].reshape(1, 28, 28)
                               for x in data]).astype('float32')
            y_data = np.array(
                [x[1] for x in data]).astype('int64').reshape(-1, 1)

            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)

            out = model(img)
            acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
121
            eval_acc_top1_list.append(float(acc_top1.numpy()))
122

123
            if batch_id % 50 == 0:
124 125 126 127 128 129 130 131 132 133
                _logger.info("Test | At step {}: acc1 = {:}, acc5 = {:}".format(
                    batch_id, acc_top1.numpy(), acc_top5.numpy()))

            if batch_num > 0 and batch_id + 1 >= batch_num:
                break

        eval_acc_top1 = sum(eval_acc_top1_list) / len(eval_acc_top1_list)

        return eval_acc_top1

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def program_test(self, program_path, batch_num=-1, batch_size=8):
        exe = paddle.static.Executor(paddle.CPUPlace())
        [inference_program, feed_target_names, fetch_targets] = (
            paddle.static.load_inference_model(program_path, exe))

        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)

        top1_correct_num = 0.
        total_num = 0.
        for batch_id, data in enumerate(test_reader()):
            img = np.array([x[0].reshape(1, 28, 28)
                            for x in data]).astype('float32')
            label = np.array([x[1] for x in data]).astype('int64')

            feed = {feed_target_names[0]: img}
            results = exe.run(inference_program,
                              feed=feed,
                              fetch_list=fetch_targets)

            pred = np.argmax(results[0], axis=1)
            top1_correct_num += np.sum(np.equal(pred, label))
            total_num += len(img)

            if total_num % 50 == 49:
                _logger.info("Test | Test num {}: acc1 = {:}".format(
                    total_num, top1_correct_num / total_num))

            if batch_num > 0 and batch_id + 1 >= batch_num:
                break
        return top1_correct_num / total_num
165 166 167 168 169 170

    def test_ptq(self):
        start_time = time.time()

        self.set_vars()

171
        # Load model
172 173 174 175
        params_path = self.download_model(self.lenet_url, self.lenet_md5,
                                          "lenet")
        params_path += "/lenet_pretrained/lenet.pdparams"

176 177 178
        model = ImperativeLenet()
        model_state_dict = paddle.load(params_path)
        model.set_state_dict(model_state_dict)
179

180 181 182 183
        # Quantize, calibrate and save
        quant_model = self.ptq.quantize(model)
        before_acc_top1 = self.model_test(quant_model, self.batch_num,
                                          self.batch_size)
184 185 186 187 188

        input_spec = [
            paddle.static.InputSpec(
                shape=[None, 1, 28, 28], dtype='float32')
        ]
189 190
        self.ptq.save_quantized_model(
            model=quant_model, path=self.save_path, input_spec=input_spec)
191 192
        print('Quantized model saved in {%s}' % self.save_path)

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        after_acc_top1 = self.model_test(quant_model, self.batch_num,
                                         self.batch_size)

        paddle.enable_static()
        infer_acc_top1 = self.program_test(self.save_path, self.batch_num,
                                           self.batch_size)
        paddle.disable_static()

        # Check
        print('Before converted acc_top1: %s' % before_acc_top1)
        print('After converted acc_top1: %s' % after_acc_top1)
        print('Infer acc_top1: %s' % infer_acc_top1)

        self.assertTrue(
            after_acc_top1 >= self.eval_acc_top1,
            msg="The test acc {%f} is less than {%f}." %
            (after_acc_top1, self.eval_acc_top1))
        self.assertTrue(
            infer_acc_top1 >= after_acc_top1,
            msg='The acc is lower after converting model.')

214
        end_time = time.time()
215
        print("total time: %ss \n" % (end_time - start_time))
216 217 218 219 220 221 222 223 224


class TestImperativePTQHist(TestImperativePTQ):
    def set_vars(self):
        config = PTQConfig(HistQuantizer(), AbsmaxQuantizer())
        self.ptq = ImperativePTQ(config)

        self.batch_num = 10
        self.batch_size = 10
225
        self.eval_acc_top1 = 0.98
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

        self.gt_thresholds = {
            'conv2d_0':
            [[0.99853515625], [0.35732391771364225], [0.10933732241392136]],
            'batch_norm2d_0': [[0.35732391771364225], [0.4291427868761275]],
            're_lu_0': [[0.4291427868761275], [0.2359918110742001]],
            'max_pool2d_0': [[0.2359918110742001], [0.25665526917146053]],
            'linear_0':
            [[1.7037603475152991], [14.395224522473026], [0.4373355209827423]],
            'add_0': [[1.7037603475152991, 0.0], [1.7037603475152991]],
        }


class TestImperativePTQKL(TestImperativePTQ):
    def set_vars(self):
        config = PTQConfig(KLQuantizer(), PerChannelAbsmaxQuantizer())
        self.ptq = ImperativePTQ(config)

        self.batch_num = 10
        self.batch_size = 10
246
        self.eval_acc_top1 = 1.0
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

        conv2d_1_wt_thresholds = [
            0.18116560578346252, 0.17079241573810577, 0.1702047884464264,
            0.179476797580719, 0.1454375684261322, 0.22981858253479004
        ]
        self.gt_thresholds = {
            'conv2d_0': [[0.99267578125], [0.37695913558696836]],
            'conv2d_1': [[0.19189296757394914], [0.24514256547263358],
                         [conv2d_1_wt_thresholds]],
            'batch_norm2d_0': [[0.37695913558696836], [0.27462541429440535]],
            're_lu_0': [[0.27462541429440535], [0.19189296757394914]],
            'max_pool2d_0': [[0.19189296757394914], [0.19189296757394914]],
            'linear_0': [[1.2839322163611087], [8.957185942414352]],
            'add_0': [[1.2839322163611087, 0.0], [1.2839322163611087]],
        }


if __name__ == '__main__':
    unittest.main()