deformable_psroi_pooling_op.cc 11.6 KB
Newer Older
C
cjt222 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/deformable_psroi_pooling_op.h"
#include <iostream>
#include <memory>
#include <vector>
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {
class DeformablePSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(Tensor), "
             "the input of Deformable PSROIPooling. "
             "The shape of input tensor is [N,C,H,W]. Where N is batch size, "
             "C is number of input channels, "
             "H is height of the feature, and "
             "W is the width of the feature.");
    AddInput("ROIs",
             "(LoDTensor), "
             "ROIs (Regions of Interest) to pool over. "
             "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [[x1, y1, x2, y2], ...]. "
             "(x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates.");
    AddInput("Trans",
             "(Tensor),"
             "offset of features on ROIs while pooling. "
             "The format is NCHW, where N is number of ROIs, "
             "C is number of channels, which indicate the offset distance "
             "in the x and y directions, "
             "H is pooled height, and "
             "W is pooled width.");
    AddAttr<bool>("no_trans",
                  "(bool), "
                  "whether add offset to get new value or not while roi "
                  "pooling, which value is True or False");
    AddAttr<float>("spatial_scale",
                   "(float), "
                   "ratio of input feature map height (or width) to "
                   "raw image height (or width). Equals the reciprocal "
                   "of total stride in convolutional layers.");
    AddAttr<int>("output_dim",
                 "(int), "
                 "the number of output channels, which should be less than "
                 "input channels. Deformable roi_pooling requires "
                 "output_channels = input_channels, while deformable "
                 "psroi_pooling requires output_channels = input_channels "
                 "* pooled_height * pooled_width");
    AddAttr<std::vector<int>>(
        "group_size",
        "(vector<int>), "
        "the number of groups which input channels are divided."
        "(eg.number of input channels is k1*k2*(C+1), which k1 and k2 "
        "are group width and height and C+1 is number of output "
        "chanels. eg.(4, 6), which 4 is height of group and 6 is "
        "width of group");
    AddAttr<int>("pooled_height",
                 "(int), "
                 "the pooled output height.");
    AddAttr<int>("pooled_width",
                 "(int), "
                 "the pooled output width.");
    AddAttr<std::vector<int>>(
        "part_size",
        "(vector<int>), "
        "the height and width of offset, eg.(4, 6), which height is 4 "
        " and width is 6");
    AddAttr<int>("sample_per_part",
                 "(int), "
                 "the number of samples in each bin");
    AddAttr<float>("trans_std",
                   "(float), "
                   "Coefficient of offset");
    AddOutput("TopCount",
              "(Tensor), "
              "record the number of pixel in average pooling to in each bin. "
              "The format is NCHW, where N is the number of ROIs, "
              "C is the number of output channels, "
              "H is the height of output, and "
              "W is the width of output.");
    AddOutput("Output",
              "(Tensor), "
              "the output of Deformable PSROIPooling. "
              "The format is NCHW, where N is the number of ROIs, "
              "C is the number of output channels, "
              "H is the height of output, and "
              "W is thewidth of output. ");
    AddComment(R"DOC(
**DeformablePSROIPooling Operator**
DeformablePSROIPooling is a new method based Region of interest pooling 
(also known as RoI pooling).
The operator has four steps:

1. Dividing each region proposal into equal-sized sections with
   the pooled_width and pooled_height.

2. Add offset to pixel in ROI to get new location and the new value which are
   computed directly through bilinear interpolation with four nearest pixel.

3. Sample several points to get average values in each bin.

4. Copying these average values to the output buffer.

DeformablePSROIPooling is part of Deformable Convolutional Networks,
please refer to https://arxiv.org/abs/1703.06211 for more details.
    )DOC");
  }
};

class DeformablePSROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of DeformablePSROIPoolOp"
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("ROIs"),
                   "Input(ROIs) of DeformablePSROIPoolOp "
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Trans"),
                   "Input(Trans) of DeformablePSROIPoolOp "
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Output"),
                   "Output(Output) of DeformablePSROIPoolOp "
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("TopCount"),
                   "Output(TopCount) of DeformablePSROIPoolOp "
                   "should not be null.");
    auto input_dims = ctx->GetInputDim("Input");
    auto rois_dims = ctx->GetInputDim("ROIs");
    auto trans_dims = ctx->GetInputDim("Trans");
    PADDLE_ENFORCE(rois_dims.size() == 2,
                   "ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
                   "given as [[ x1, y1, x2, y2], ...].");
    PADDLE_ENFORCE(trans_dims.size() == 4,
                   "The format of Input Trans is (N, 2, H, W).");
    auto pooled_height = ctx->Attrs().Get<int>("pooled_height");
    auto pooled_width = ctx->Attrs().Get<int>("pooled_width");
    auto spatial_scale = ctx->Attrs().Get<float>("spatial_scale");
    auto output_channels = ctx->Attrs().Get<int>("output_dim");
    auto group_size = ctx->Attrs().Get<std::vector<int>>("group_size");
    auto group_height = group_size[0];
    auto group_width = group_size[1];
    auto part_size = ctx->Attrs().Get<std::vector<int>>("part_size");
    auto part_height = part_size[0];
    auto part_width = part_size[1];
    auto sample_per_part = ctx->Attrs().Get<int>("sample_per_part");
    auto trans_std = ctx->Attrs().Get<float>("trans_std");
    PADDLE_ENFORCE(trans_std >= 0.0f, "trans_std must greater than 0.0");
    PADDLE_ENFORCE(input_dims[1] >= output_channels,
                   "input channels must greater than out_channels");
    PADDLE_ENFORCE_GT(pooled_height, 0,
                      "The pooled height must greater than 0");
    PADDLE_ENFORCE_GT(pooled_width, 0, "The pooled width must greater than 0");
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
                      "The spatial scale must greater than 0");
    PADDLE_ENFORCE_EQ(group_size.size(), 2,
                      "The size of group_size should be 2.");
    PADDLE_ENFORCE_GT(group_height, 0,
                      "The group_height in group_size must greater than 0");
    PADDLE_ENFORCE_GT(group_width, 0,
                      "The group_width in group_size must greater than 0");
    PADDLE_ENFORCE_EQ(part_size.size(), 2,
                      "The size of part_size should be 2.");
    PADDLE_ENFORCE_GT(part_height, 0,
                      "The part_height in part_size must greater than 0");
    PADDLE_ENFORCE_GT(part_width, 0,
                      "The part_width in part_size must greater than 0");
    PADDLE_ENFORCE(part_height <= trans_dims[2],
                   "The height of trans must greater than part_height");
    PADDLE_ENFORCE(part_width <= trans_dims[3],
                   "The width of trans must greater than part_width");
    PADDLE_ENFORCE_GT(sample_per_part, 0,
                      "The sample_per_part must greater than 0");
    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
    out_dims[1] = output_channels;
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
    ctx->SetOutputDim("Output", out_dims);
    ctx->SetOutputDim("TopCount", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                   ctx.device_context());
  }
};

class DeformablePSROIPoolGradOpDescMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());

    op->SetType("deformable_psroi_pooling_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Trans", Input("Trans"));
    op->SetInput("ROIs", Input("ROIs"));
    op->SetInput("TopCount", Output("TopCount"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Trans"), InputGrad("Trans"));

    op->SetAttrMap(Attrs());
    return op;
  }
};

class DeformablePSROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Output")),
                   "The gradient of Output should not be null.");
    if (ctx->HasOutput(framework::GradVarName("Input"))) {
      ctx->SetOutputDim(framework::GradVarName("Input"),
                        ctx->GetInputDim("Input"));
    }
    if (ctx->HasOutput(framework::GradVarName("Trans"))) {
      ctx->SetOutputDim(framework::GradVarName("Trans"),
                        ctx->GetInputDim("Trans"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("Trans")->type(),
                                   ctx.device_context());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;
REGISTER_OPERATOR(deformable_psroi_pooling, ops::DeformablePSROIPoolOp,
                  ops::DeformablePSROIPoolOpMaker,
                  ops::DeformablePSROIPoolGradOpDescMaker);
REGISTER_OPERATOR(deformable_psroi_pooling_grad,
                  ops::DeformablePSROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(deformable_psroi_pooling,
                       ops::DeformablePSROIPoolCPUKernel<CPU, float>,
                       ops::DeformablePSROIPoolCPUKernel<CPU, double>);
REGISTER_OP_CPU_KERNEL(deformable_psroi_pooling_grad,
                       ops::DeformablePSROIPoolGradCPUKernel<CPU, float>,
                       ops::DeformablePSROIPoolGradCPUKernel<CPU, double>);