test_conv2d_op.py 8.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
D
dzhwinter 已提交
17 18

import paddle.v2.fluid.core as core
H
hedaoyuan 已提交
19
from op_test import OpTest
20 21


C
chengduoZH 已提交
22 23 24 25 26 27 28
def conv2d_forward_naive(input, filter, group, conv_param):
    in_n, in_c, in_h, in_w = input.shape
    out_c, f_c, f_h, f_w = filter.shape
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
    sub_out_c = out_c / group

C
chengduoZH 已提交
29 30 31 32
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
    out_h = 1 + (in_h + 2 * pad[0] - (dilation[0] * (f_h - 1) + 1)) / stride[0]
    out_w = 1 + (in_w + 2 * pad[1] - (dilation[1] * (f_w - 1) + 1)) / stride[1]
C
chengduoZH 已提交
33 34
    out = np.zeros((in_n, out_c, out_h, out_w))

武毅 已提交
35 36
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38
    input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], )),
C
chengduoZH 已提交
39 40
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
41 42 43 44 45

    filter_dilation = np.zeros((out_c, f_c, d_bolck_h, d_bolck_w))
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
46 47 48
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
49 50
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
51 52
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
53

C
chengduoZH 已提交
54 55
                f_sub = filter_dilation[g * sub_out_c:(g + 1) *
                                        sub_out_c, :, :, :]
C
chengduoZH 已提交
56
                for k in range(sub_out_c):
C
chengduoZH 已提交
57 58 59
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
60 61 62 63

    return out


H
hedaoyuan 已提交
64
class TestConv2dOp(OpTest):
65
    def setUp(self):
66
        self.use_cudnn = False
C
chengduoZH 已提交
67 68
        self.init_op_type()
        self.init_group()
C
chengduoZH 已提交
69
        self.init_dilation()
C
chengduoZH 已提交
70
        self.init_test_case()
C
chengduoZH 已提交
71

C
chengduoZH 已提交
72 73 74 75 76
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
C
chengduoZH 已提交
77 78
        input = np.random.random(self.input_size).astype("float32")
        filter = np.random.random(self.filter_size).astype("float32")
Y
Yu Yang 已提交
79 80
        output = conv2d_forward_naive(input, filter, self.groups,
                                      conv2d_param).astype('float32')
81

H
hedaoyuan 已提交
82
        self.inputs = {'Input': input, 'Filter': filter}
H
hedaoyuan 已提交
83
        self.attrs = {
C
chengduoZH 已提交
84 85
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
86
            'groups': self.groups,
87 88
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn
H
hedaoyuan 已提交
89
        }
90 91
        self.outputs = {'Output': output}

H
hedaoyuan 已提交
92
    def test_check_output(self):
93 94 95 96 97
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
H
hedaoyuan 已提交
98

H
hedaoyuan 已提交
99
    def test_check_grad(self):
100 101 102 103 104 105 106 107 108 109
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.02)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
H
hedaoyuan 已提交
110

111
    def test_check_grad_no_filter(self):
112 113 114 115 116 117 118 119 120 121 122 123 124
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
125 126

    def test_check_grad_no_input(self):
127 128 129 130 131 132 133 134 135 136 137 138 139
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
140

C
chengduoZH 已提交
141 142 143 144 145 146 147 148
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3]

C
chengduoZH 已提交
149 150 151
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
152
    def init_group(self):
H
hedaoyuan 已提交
153 154
        self.groups = 1

C
chengduoZH 已提交
155
    def init_op_type(self):
武毅 已提交
156 157
        self.op_type = "conv2d"

H
hedaoyuan 已提交
158

C
chengduoZH 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
class TestWithPad(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3]


class TestWithStride(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3]


H
hedaoyuan 已提交
179
class TestWithGroup(TestConv2dOp):
C
chengduoZH 已提交
180
    def init_group(self):
H
hedaoyuan 已提交
181 182
        self.groups = 3

武毅 已提交
183

C
chengduoZH 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196
class TestWith1x1(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 1, 1]

    def init_group(self):
        self.groups = 3


C
chengduoZH 已提交
197 198 199 200 201 202 203 204
class TestWithDilation(TestConv2dOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3]
C
chengduoZH 已提交
205

C
chengduoZH 已提交
206 207
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
208

C
chengduoZH 已提交
209
    def init_group(self):
C
chengduoZH 已提交
210
        self.groups = 3
武毅 已提交
211

C
chengduoZH 已提交
212

213 214
#----------------Conv2dCUDNN----------------
class TestCUDNN(TestConv2dOp):
C
chengduoZH 已提交
215
    def init_op_type(self):
216 217
        self.use_cudnn = True
        self.op_type = "conv2d"
C
chengduoZH 已提交
218 219


220
class TestCUDNNWithPad(TestWithPad):
C
chengduoZH 已提交
221
    def init_op_type(self):
222 223
        self.use_cudnn = True
        self.op_type = "conv2d"
C
chengduoZH 已提交
224 225


226
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
227
    def init_op_type(self):
228 229
        self.use_cudnn = True
        self.op_type = "conv2d"
武毅 已提交
230

C
chengduoZH 已提交
231

232
class TestCUDNNWithGroup(TestWithGroup):
C
chengduoZH 已提交
233
    def init_op_type(self):
234 235
        self.use_cudnn = True
        self.op_type = "conv2d"
C
chengduoZH 已提交
236

武毅 已提交
237

238
class TestCUDNNWith1x1(TestWith1x1):
C
chengduoZH 已提交
239
    def init_op_type(self):
240 241
        self.use_cudnn = True
        self.op_type = "conv2d"
C
chengduoZH 已提交
242

武毅 已提交
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
class TestDepthwiseConv(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3]
        self.op_type = "depthwise_conv"


class TestDepthwiseConv2(TestConv2dOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3]
        self.op_type = "depthwise_conv"


C
chengduoZH 已提交
268
#  cudnn v5 does not support dilation conv.
269
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
270 271 272
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

273 274
if __name__ == '__main__':
    unittest.main()