trt_mobilenet_demo.cc 2.5 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains demo of mobilenet for tensorrt.
 */

#include <gflags/gflags.h>
#include <glog/logging.h>  // use glog instead of CHECK to avoid importing other paddle header files.
#include "paddle/fluid/inference/demo_ci/utils.h"

DECLARE_double(fraction_of_gpu_memory_to_use);
DEFINE_string(modeldir, "", "Directory of the inference model.");
DEFINE_string(refer, "", "path to reference result for comparison.");
DEFINE_string(
    data, "",
    "path of data; each line is a record, format is "
    "'<space splitted floats as data>\t<space splitted ints as shape'");

namespace paddle {
namespace demo {

/*
N
nhzlx 已提交
35
 * Use the tensorrt fluid engine to inference the demo.
N
nhzlx 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
 */
void Main() {
  std::unique_ptr<PaddlePredictor> predictor;
  paddle::contrib::MixedRTConfig config;
  config.param_file = FLAGS_modeldir + "/__params__";
  config.prog_file = FLAGS_modeldir + "/__model__";
  config.use_gpu = true;
  config.device = 0;
  config.max_batch_size = 1;
  config.fraction_of_gpu_memory = 0.1;  // set by yourself
  predictor = CreatePaddlePredictor<paddle::contrib::MixedRTConfig>(config);

  VLOG(3) << "begin to process data";
  // Just a single batch of data.
  std::string line;
  std::ifstream file(FLAGS_data);
  std::getline(file, line);
  auto record = ProcessALine(line);
  file.close();

  // Inference.
  PaddleTensor input;
  input.shape = record.shape;
  input.data =
      PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
  input.dtype = PaddleDType::FLOAT32;

  VLOG(3) << "run executor";
  std::vector<PaddleTensor> output;
  predictor->Run({input}, &output, 1);

  VLOG(3) << "output.size " << output.size();
  auto& tensor = output.front();
  VLOG(3) << "output: " << SummaryTensor(tensor);

  // compare with reference result
  CheckOutput(FLAGS_refer, tensor);
}

}  // namespace demo
}  // namespace paddle

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
  paddle::demo::Main();
  return 0;
}