test_complex_transpose.py 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg


class TestComplexTransposeLayer(unittest.TestCase):
    def setUp(self):
C
chentianyu03 已提交
24 25
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
26
        if fluid.core.is_compiled_with_cuda():
C
chentianyu03 已提交
27
            self._places.append(paddle.CUDAPlace(0))
28

C
chentianyu03 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    def test_transpose_by_complex_api(self):
        for dtype in self._dtypes:
            data = np.random.random(
                (2, 3, 4, 5)).astype(dtype) + 1J * np.random.random(
                    (2, 3, 4, 5)).astype(dtype)
            perm = [3, 2, 0, 1]
            np_trans = np.transpose(data, perm)
            for place in self._places:
                with dg.guard(place):
                    var = dg.to_variable(data)
                    trans = paddle.complex.transpose(var, perm=perm)
                self.assertTrue(np.allclose(trans.numpy(), np_trans))

    def test_transpose_by_basic_api(self):
        for dtype in self._dtypes:
            data = np.random.random(
                (2, 3, 4, 5)).astype(dtype) + 1J * np.random.random(
                    (2, 3, 4, 5)).astype(dtype)
            perm = [3, 2, 0, 1]
            np_trans = np.transpose(data, perm)
            for place in self._places:
                with dg.guard(place):
                    var = paddle.Tensor(
                        value=data,
                        place=place,
                        persistable=False,
                        zero_copy=None,
                        stop_gradient=True)
                    trans = paddle.transpose(var, perm=perm)
                self.assertTrue(np.allclose(trans.numpy(), np_trans))
59 60 61 62


if __name__ == '__main__':
    unittest.main()