sample_logits_op.cc 9.6 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sample_logits_op.h"
#include "paddle/fluid/operators/math/sample_prob.h"

namespace paddle {
namespace operators {

class SampleLogitsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Logits",
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
             "and K is the class number.");
X
xuezhong 已提交
27 28
    AddInput("Labels",
             "(Tensor) The ground truth which is a 2-D tensor. Labels is a "
X
xuezhong 已提交
29 30
             "Tensor<int64> with shape [N x NT], where NT is the number of"
             "true labels for each example.");
X
xuezhong 已提交
31 32 33 34 35 36 37 38 39
    AddInput("CustomizedSamples",
             "(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
             "NT + S],"
             " where N is the batch size, NT is the number of true labels "
             "and S is the number of negtive sample for each example."
             "The first NT elements of each row should be the same with true "
             "labels, "
             "followed by S custom negtive samples. This tensor"
             "is only used when use_customized_samples is true.")
X
xuezhong 已提交
40 41
        .AsDispensable();
    AddInput(
X
xuezhong 已提交
42 43 44 45 46 47
        "CustomizedProbabilities",
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
        "The tensor has the same shape with CustomSamples,"
        "and each element represents probability of element in CustomSamples. "
        "This "
        "tensor is only used when use_customized_samples is true.")
X
xuezhong 已提交
48
        .AsDispensable();
X
xuezhong 已提交
49 50 51 52 53 54 55
    AddOutput("Samples",
              "(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
              "NT + S]."
              "The outputs value of sampler, including NT true lables and S "
              "negetive samples "
              "for each example. This will be used in"
              "backward calculation.")
X
xuezhong 已提交
56 57 58
        .AsIntermediate();
    AddOutput(
        "Probabilities",
X
xuezhong 已提交
59 60
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
        "The probabilites of sampled positive and negtive labels.")
X
xuezhong 已提交
61 62 63
        .AsIntermediate();
    AddOutput("SampledLogits",
              "(Tensor, default: Tensor<float>), A 2-D tensor with shape"
X
xuezhong 已提交
64 65
              "[N, NT + S]. The outputs value of sampled logits, which will be"
              "used in backward propagation.")
X
xuezhong 已提交
66
        .AsIntermediate();
X
xuezhong 已提交
67
    AddOutput(
X
xuezhong 已提交
68 69 70
        "SampledLabels",
        "(Tensor, default: Tensor<int64>), A 2-D tensor. The sampled labels"
        "with shape [N, NT]. The tonsor contains hard labels as input to "
X
xuezhong 已提交
71
        " softmax op, that is 0, 1, ..., NT-1 because of the first NT elements"
X
xuezhong 已提交
72
        " of Sampels are positive lables.");
X
xuezhong 已提交
73
    AddAttr<bool>(
X
xuezhong 已提交
74 75 76 77
        "use_customized_samples",
        "An indicator whether to use customized samples with probabilities, if "
        "True"
        "the operator will use customized samples and customized probabilities"
X
xuezhong 已提交
78 79 80 81 82 83
        "otherwise, the operator will generate them by itself.")
        .SetDefault(false);
    AddAttr<bool>(
        "uniq",
        "An indicator whether to sample non-repetitive negtive labels, if True"
        "the operator will sample negtive labels without replacement."
X
xuezhong 已提交
84
        "Otherwise, the operator will sample negtive labels with replacement.")
X
xuezhong 已提交
85
        .SetDefault(true);
X
xuezhong 已提交
86 87 88 89 90 91 92 93 94 95
    AddAttr<bool>(
        "remove_accidental_hits",
        "An indicator whether to remove accidental hits when samples hits true"
        "labels, the removal is implemented by subtracting the corresponding"
        "logits by float_max to subpress their softmax to be zero.")
        .SetDefault(true);
    AddAttr<int>("num_samples", "The number of negative samples.");
    AddAttr<int>("seed", "Random seed for generating samples").SetDefault(0);

    AddComment(R"DOC(
X
xuezhong 已提交
96 97
  """
  Computes sampled output training logits and labels suitable for implementing
X
xuezhong 已提交
98
  sampled softmax.        
X
xuezhong 已提交
99
  """
X
xuezhong 已提交
100 101 102 103 104 105 106 107 108 109 110 111

)DOC");
  }
};

class SampleLogitsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
X
xuezhong 已提交
112 113
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should be not null.");
X
xuezhong 已提交
114 115 116 117 118 119 120

    PADDLE_ENFORCE(ctx->HasOutput("Samples"),
                   "Output(Samples) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Probabilities"),
                   "Output(Probabilities) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("SampledLogits"),
                   "Output(SampledLogits) should be not null.");
X
xuezhong 已提交
121 122
    PADDLE_ENFORCE(ctx->HasOutput("SampledLabels"),
                   "Output(SampledLabels) should be not null.");
X
xuezhong 已提交
123 124

    auto logits_dims = ctx->GetInputDim("Logits");
X
xuezhong 已提交
125
    auto labels_dims = ctx->GetInputDim("Labels");
X
xuezhong 已提交
126 127 128 129 130 131 132 133

    PADDLE_ENFORCE_EQ(
        logits_dims.size(), 2UL,
        "The logits of softmax_with_cross_entropy should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
                      "The labels should be a 2-D tensor.");

    const int num_samples = ctx->Attrs().Get<int>("num_samples");
X
xuezhong 已提交
134 135 136 137
    int num_sampled_classes = labels_dims[1] + num_samples;
    if ((!ctx->IsRuntime()) && labels_dims[1] <= 0) {
      num_sampled_classes = -1;
    }
X
xuezhong 已提交
138 139 140
    ctx->SetOutputDim("Samples", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("Probabilities", {logits_dims[0], num_sampled_classes});
    ctx->SetOutputDim("SampledLogits", {logits_dims[0], num_sampled_classes});
X
xuezhong 已提交
141
    ctx->SetOutputDim("SampledLabels", {logits_dims[0], labels_dims[1]});
X
xuezhong 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Logits"));
    framework::OpKernelType kt =
        framework::OpKernelType(data_type, ctx.device_context());
    return kt;
  }
};

// UNDERSTAND: InferShape for Grad
class SampleLogitsOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should not be null.");
X
xuezhong 已提交
162 163
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should be not null.");
X
xuezhong 已提交
164 165 166 167 168 169 170 171 172 173
    PADDLE_ENFORCE(ctx->HasInput("Samples"),
                   "Input(Samples) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("SampledLogits"),
                   "Input(SampledLogits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("SampledLogits")),
                   "Input(SampledLogits@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto logit_dims = ctx->GetInputDim("Logits");
X
xuezhong 已提交
174
    auto label_dims = ctx->GetInputDim("Labels");
X
xuezhong 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "The label should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(logit_dims.size(), 2UL,
                      "The logits should be a 2-D tensor.");

    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Logits"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(
        ctx.InputVar(framework::GradVarName("SampledLogits")));
    framework::OpKernelType kt =
        framework::OpKernelType(data_type, ctx.device_context());
    return kt;
  }
};

// UNDERSTAND: what's the rule for making a GradMaker TODO
class SampleLogitsGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
    grad_op->SetType("sample_logits_grad");
    grad_op->SetInput("Logits", Input("Logits"));
X
xuezhong 已提交
205
    grad_op->SetInput("Labels", Input("Labels"));
X
xuezhong 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    grad_op->SetInput("Samples", Output("Samples"));
    grad_op->SetInput("SampledLogits", Output("SampledLogits"));
    grad_op->SetInput(framework::GradVarName("SampledLogits"),
                      OutputGrad("SampledLogits"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(sample_logits, ops::SampleLogitsOp, ops::SampleLogitsOpMaker,
                  ops::SampleLogitsGradMaker);
REGISTER_OPERATOR(sample_logits_grad, ops::SampleLogitsOpGrad);
REGISTER_OP_CPU_KERNEL(sample_logits, ops::SampleLogitsKernel<float>,
                       ops::SampleLogitsKernel<double>);
REGISTER_OP_CPU_KERNEL(sample_logits_grad, ops::SampleLogitsGradKernel<float>,
                       ops::SampleLogitsGradKernel<double>);