test_eigvalsh_op.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
from op_test import OpTest
from gradient_checker import grad_check


class TestEigvalshOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.op_type = "eigvalsh"
        self.init_input()
        self.init_config()
        np.random.seed(123)
        out_w, out_v = np.linalg.eigh(self.x_np, self.UPLO)
        self.inputs = {"X": self.x_np}
        self.attrs = {"UPLO": self.UPLO, "is_test": False}
        self.outputs = {'Eigenvalues': out_w, 'Eigenvectors': out_v}

    def init_config(self):
        self.UPLO = 'L'

    def init_input(self):
        self.x_shape = (10, 10)
        self.x_type = np.float64
        self.x_np = np.random.random(self.x_shape).astype(self.x_type)

    def test_check_output(self):
        # Vectors in posetive or negative is equivalent
        self.check_output(no_check_set=['Eigenvectors'])

    def test_grad(self):
        self.check_grad(["X"], ["Eigenvalues"])


class TestEigvalshUPLOCase(TestEigvalshOp):
    def init_config(self):
        self.UPLO = 'U'


class TestEigvalshGPUCase(unittest.TestCase):
    def setUp(self):
        self.x_shape = [32, 32]
        self.dtype = "float32"
        np.random.seed(123)
        self.x_np = np.random.random(self.x_shape).astype(self.dtype)
        self.rtol = 1e-5
        self.atol = 1e-5

    def test_check_output_gpu(self):
        if paddle.is_compiled_with_cuda():
            paddle.disable_static(place=paddle.CUDAPlace(0))
            input_real_data = paddle.to_tensor(self.x_np)
            expected_w = np.linalg.eigvalsh(self.x_np)
            actual_w = paddle.linalg.eigvalsh(input_real_data)
            np.testing.assert_allclose(
                actual_w, expected_w, rtol=self.rtol, atol=self.atol)


class TestEigvalshAPI(unittest.TestCase):
    def setUp(self):
        self.init_input_shape()
        self.dtype = "float32"
        self.UPLO = 'L'
        self.rtol = 1e-6
        self.atol = 1e-6
        self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
            else paddle.CPUPlace()
        np.random.seed(123)
        self.real_data = np.random.random(self.x_shape).astype(self.dtype)
        self.complex_data = np.random.random(self.x_shape).astype(
            self.dtype) + 1J * np.random.random(self.x_shape).astype(self.dtype)
        self.trans_dims = list(range(len(self.x_shape) - 2)) + [
            len(self.x_shape) - 1, len(self.x_shape) - 2
        ]

    def init_input_shape(self):
        self.x_shape = [5, 5]

    def compare_result(self, actual_w, expected_w):
        np.testing.assert_allclose(
            actual_w, expected_w, rtol=self.rtol, atol=self.atol)

    def check_static_float_result(self):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            input_x = paddle.static.data(
                'input_x', shape=self.x_shape, dtype=self.dtype)
            output_w = paddle.linalg.eigvalsh(input_x)
            exe = paddle.static.Executor(self.place)
            expected_w = exe.run(main_prog,
                                 feed={"input_x": self.real_data},
                                 fetch_list=[output_w])

            actual_w = np.linalg.eigvalsh(self.real_data)
            self.compare_result(actual_w, expected_w[0])

    def check_static_complex_result(self):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            x_dtype = np.complex64 if self.dtype == "float32" else np.complex128
            input_x = paddle.static.data(
                'input_x', shape=self.x_shape, dtype=x_dtype)
            output_w = paddle.linalg.eigvalsh(input_x)
            exe = paddle.static.Executor(self.place)
            expected_w = exe.run(main_prog,
                                 feed={"input_x": self.complex_data},
                                 fetch_list=[output_w])
            actual_w = np.linalg.eigvalsh(self.complex_data)
            self.compare_result(actual_w, expected_w[0])

    def test_in_static_mode(self):
        paddle.enable_static()
        self.check_static_float_result()
        self.check_static_complex_result()

    def test_in_dynamic_mode(self):
        paddle.disable_static(self.place)
        input_real_data = paddle.to_tensor(self.real_data)
        expected_w = np.linalg.eigvalsh(self.real_data)
        actual_w = paddle.linalg.eigvalsh(input_real_data)
        self.compare_result(actual_w, expected_w)

        input_complex_data = paddle.to_tensor(self.complex_data)
        expected_w = np.linalg.eigvalsh(self.complex_data)
        actual_w = paddle.linalg.eigvalsh(input_complex_data)
        self.compare_result(actual_w, expected_w)

    def test_eigvalsh_grad(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.complex_data, stop_gradient=False)
        w = paddle.linalg.eigvalsh(x)
        (w.sum()).backward()
        np.testing.assert_allclose(
            abs(x.grad.numpy()),
            abs(x.grad.numpy().conj().transpose(self.trans_dims)),
            rtol=self.rtol,
            atol=self.atol)


class TestEigvalshBatchAPI(TestEigvalshAPI):
    def init_input_shape(self):
        self.x_shape = [2, 5, 5]


class TestEigvalshAPIError(unittest.TestCase):
    def test_error(self):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, startup_prog):
            #input maxtrix must greater than 2 dimensions
            input_x = paddle.static.data(
                name='x_1', shape=[12], dtype='float32')
            self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x)

            #input matrix must be square matrix
            input_x = paddle.static.data(
                name='x_2', shape=[12, 32], dtype='float32')
            self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x)

            #uplo must be in 'L' or 'U'
            input_x = paddle.static.data(
                name='x_3', shape=[4, 4], dtype="float32")
            uplo = 'R'
            self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x, uplo)

            #x_data cannot be integer
            input_x = paddle.static.data(
                name='x_4', shape=[4, 4], dtype="int32")
            self.assertRaises(TypeError, paddle.linalg.eigvalsh, input_x)


if __name__ == "__main__":
    unittest.main()