lookup_sparse_table_op.cc 6.4 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace operators {

constexpr int64_t kNoPadding = -1;

class LookupSparseTableInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupSparseTableOp should not be null.");
    auto shape_w = ctx->GetInputDim("W");
    auto shape_ids = ctx->GetInputDim("Ids");
    shape_w[0] = shape_ids.size();
    ctx->SetOutputDim("Out", shape_w);
  }
};

class LookupSparseTableOp : public framework::OperatorBase {
 public:
  using framework::OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
    auto out_var = scope.FindVar(Output("Out"));
    auto w_var = scope.FindVar(Input("W"));
    auto ids_var = scope.FindVar(Input("Ids"));
    unsigned int seed = static_cast<unsigned int>(Attr<int>("seed"));
    float min = Attr<float>("min");
    float max = Attr<float>("max");
Y
Yancey1989 已提交
52
    bool auto_grown_table = Attr<bool>("auto_grown_table");
Y
Yancey1989 已提交
53 54 55 56 57

    PADDLE_ENFORCE(out_var->IsType<framework::LoDTensor>(),
                   "The type of Out var should be LodTensor.");
    PADDLE_ENFORCE(w_var->IsType<framework::SelectedRows>(),
                   "The type of W var should be SelectedRows.");
Y
Yancey1989 已提交
58
    PADDLE_ENFORCE(ids_var->IsType<framework::LoDTensor>(),
Y
Yancey1989 已提交
59
                   "The type of Ids var should be SelectedRows.");
Y
Yancey1989 已提交
60
    auto &ids_t = ids_var->Get<framework::LoDTensor>();
Y
Yancey1989 已提交
61 62
    auto out_t = out_var->GetMutable<framework::LoDTensor>();
    auto w_t = w_var->GetMutable<framework::SelectedRows>();
Y
Yancey1989 已提交
63 64 65 66 67
    std::vector<int64_t> keys;
    keys.resize(ids_t.numel());
    for (size_t i = 0; i < ids_t.numel(); ++i) {
      keys[i] = ids_t.data<int64_t>()[i];
    }
Y
Yancey1989 已提交
68 69 70 71 72 73 74 75 76 77 78

    // TODO(Yancey1989): support CUDA Place for the sparse table
    platform::CPUPlace cpu;
    auto out_shape = w_t->value().dims();
    out_shape[0] = keys.size();
    out_t->Resize(out_shape);
    out_t->mutable_data(cpu, w_t->value().type());
    PADDLE_ENFORCE_EQ(framework::ToDataType(w_t->value().type()),
                      framework::proto::VarType::FP32,
                      "The sparse table only support FP32");
    auto non_keys_pair = w_t->Get(keys, out_t);
Y
Yancey1989 已提交
79 80 81 82
    if (!auto_grown_table) {
      PADDLE_ENFORCE_EQ(non_keys_pair.size(), static_cast<size_t>(0),
                        "there is some keys does exists in the sparse table.");
    }
Y
Yancey1989 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    auto value_shape = w_t->value().dims();
    value_shape[0] = 1;
    for (const auto &it : non_keys_pair) {
      const auto key = it.first;
      const auto index = it.second;
      framework::Tensor value;
      value.Resize(value_shape);
      auto data = value.mutable_data<float>(cpu);

      std::minstd_rand engine;
      engine.seed(seed);
      std::uniform_real_distribution<float> dist(min, max);
      int64_t size = value.numel();
      for (int64_t i = 0; i < size; ++i) {
        data[i] = dist(engine);
      }
      w_t->Set(key, value);
      memory::Copy(cpu, out_t->mutable_data<float>(cpu) + index * value.numel(),
                   cpu, value.data<float>(), value.numel() * sizeof(float));
    }
  }
};

class LookupSparseTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LookupSparseTableOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("W",
             "(SelectedRows) The input represents embedding table, "
             "which is a learnable parameter.");
    AddInput("Ids",
             "(SelectedRows) Ids's type should be SelectedRows "
             "the rows of Ids contains the Ids to be looked up in W.");
    AddOutput("Out",
              "(SelectedRows) The lookup results, which have the "
              "same type as W.");
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(kNoPadding);
    AddAttr<float>("min",
                   "(float, default -1.0) "
                   "Minimum value of uniform random")
        .SetDefault(-1.0f);
    AddAttr<float>("max",
                   "(float, default 1.0) "
                   "Maximun value of uniform random")
        .SetDefault(1.0f);
    AddAttr<int>("seed",
                 "(int, default 0) "
                 "Random seed used for generating samples. "
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
        .SetDefault(0);
Y
Yancey1989 已提交
140 141 142 143
    AddAttr<bool>("auto_grown_table",
                  "(bool default false)"
                  "Whether create new value if for nonexistent key.")
        .SetDefault(true);
Y
Yancey1989 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    AddComment(R"DOC(
Lookup Sprase Tablel Operator.

This operator is used to perform lookup on parameter W,
then concatenated into a sparse tensor.

The type of Ids(Input) is SelectedRows, the rows of Ids contains
the ids to be looked up in W;
if the Id is not in the sparse table, this operator will return a
random value and set the value into the table for the next looking up.

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(lookup_sparse_table, ops::LookupSparseTableOp,
                  ops::LookupSparseTableInferShape,
                  ops::LookupSparseTableOpMaker,
                  paddle::framework::EmptyGradOpMaker);