cross_entropy_op.cc 6.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cross_entropy_op.h"

namespace paddle {
namespace operators {

20
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
29

Q
Qiao Longfei 已提交
30 31 32 33 34
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
C
caoying03 已提交
35
                      "The 1st dimension of Input(X) and Input(Label) should "
36
                      "be equal.");
37
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
Qiao Longfei 已提交
38
      PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
39
                        "If Attr(soft_label) == true, the 2nd dimension of "
C
caoying03 已提交
40
                        "Input(X) and Input(Label) should be equal.");
41
    } else {
Q
Qiao Longfei 已提交
42
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
43
                        "If Attr(soft_label) == false, the 2nd dimension of "
C
caoying03 已提交
44
                        "Input(Label) should be 1.");
45
    }
46

Q
Qiao Longfei 已提交
47 48
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
Q
Qiao Longfei 已提交
49
  }
Y
Yu Yang 已提交
50 51 52 53 54 55

  // CrossEntropy's data type just determined by "X"
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("X")->type());
  }
Q
Qiao Longfei 已提交
56 57
};

58
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
59 60 61
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Y
Yan Chunwei 已提交
62
 protected:
63
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
64 65 66 67 68 69
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");
70

Q
Qiao Longfei 已提交
71 72 73 74 75 76 77
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
C
caoying03 已提交
78
                      "The 1st dimension of Input(X) and Input(Label) should "
79
                      "be equal.");
Q
Qiao Longfei 已提交
80
    PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
C
caoying03 已提交
81
                      "The 1st dimension of Input(X) and Input(Y@Grad) should "
82
                      "be equal.");
Q
Qiao Longfei 已提交
83
    PADDLE_ENFORCE_EQ(dy_dims[1], 1,
C
caoying03 已提交
84
                      "The 2nd dimension of Input(Y@Grad) should be 1.");
85
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
Qiao Longfei 已提交
86
      PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
87
                        "When Attr(soft_label) == true, the 2nd dimension of "
C
caoying03 已提交
88
                        "Input(X) and Input(Label) should be equal.");
89
    } else {
Q
Qiao Longfei 已提交
90
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
91
                        "When Attr(soft_label) == false, the 2nd dimension of "
C
caoying03 已提交
92
                        "Input(Label) should be 1.");
93
    }
Q
Qiao Longfei 已提交
94
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
Y
Yan Chunwei 已提交
95
  }
Y
Yu Yang 已提交
96 97 98 99 100 101

  // CrossEntropy's data type just determined by "X"
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("X")->type());
  }
Y
Yan Chunwei 已提交
102 103
};

104
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
105
 public:
Q
Qiao Longfei 已提交
106 107
  CrossEntropyOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
108
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
109 110 111 112 113
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
             "where N is the batch size and D is the number of classes. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
C
caoying03 已提交
114 115 116 117
    AddInput(
        "Label",
        "(Tensor, default Tensor<int>), the ground truth which is "
        "a 2-D tensor. "
118
        "When soft_label is set to false, `Label` is a Tensor<int> with shape "
C
caoying03 已提交
119
        "[N x 1]. "
120
        "When soft_label is set to true, `Label` is a Tensor<float/double> "
C
caoying03 已提交
121
        "with shape [N x K].");
C
caoying03 已提交
122
    AddOutput("Y",
C
caoying03 已提交
123
              "(Tensor, default Tensor<float>), a 2-D tensor "
C
caoying03 已提交
124 125
              "with shape [N x 1]. The cross entropy loss.");
    AddAttr<bool>(
126
        "soft_label",
C
caoying03 已提交
127 128
        "(bool, default false), a flag to indicate whether to interpretate "
        "the given labels as soft labels.")
129
        .SetDefault(false);
Q
Qiao Longfei 已提交
130
    AddComment(R"DOC(
131
CrossEntropy Operator.
Q
Qiao Longfei 已提交
132

133 134 135
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
136
    soft_label = false, Label[i, 0] indicates the class index for sample i:
137

138
                Y[i] = -log(X[i, Label[i]])
Q
Qiao Longfei 已提交
139

140
2) Soft-label cross-entropy:
141
    soft_label = true, Label[i, j] indicates the soft label of class j
142
    for sample i:
143

144
                Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
145

146
   Please make sure that in this case the summuation of each row of Label
147 148 149 150 151 152
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
153 154 155

Both the input `X` and `Label` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
Q
Qiao Longfei 已提交
156 157 158 159 160 161
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
162
namespace ops = paddle::operators;
163 164 165 166 167
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
            cross_entropy_grad, ops::CrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
                       ops::CrossEntropyGradientOpKernel<float>);