distribute_fpn_proposals_op.cu 9.1 KB
Newer Older
J
jerrywgz 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
J
jerrywgz 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
J
jerrywgz 已提交
16
#include "cub/cub.cuh"
17 18 19 20 21 22
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#endif

#include <paddle/fluid/memory/allocation/allocator.h>
J
jerrywgz 已提交
23
#include "paddle/fluid/memory/memcpy.h"
24
#include "paddle/fluid/operators/detection/bbox_util.h"
J
jerrywgz 已提交
25 26
#include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h"
#include "paddle/fluid/operators/gather.cu.h"
27
#include "paddle/fluid/operators/math/math_function.h"
J
jerrywgz 已提交
28 29 30 31 32 33 34 35 36
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

37
static constexpr int kNumCUDAThreads = 64;
J
jerrywgz 已提交
38 39 40 41 42 43 44 45 46 47
static constexpr int kNumMaxinumNumBlocks = 4096;

int const BBoxSize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
48
__global__ void GPUDistFpnProposalsHelper(
J
jerrywgz 已提交
49 50 51
    const int nthreads, const T* rois, const int lod_size,
    const int refer_level, const int refer_scale, const int max_level,
    const int min_level, int* roi_batch_id_data, int* sub_lod_list,
52
    int* target_lvls, bool pixel_offset = true) {
53
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
54 55
    const T* offset_roi = rois + i * BBoxSize;
    int roi_batch_ind = roi_batch_id_data[i];
J
jerrywgz 已提交
56
    // get the target level of current rois
57
    T roi_area = RoIArea(offset_roi, pixel_offset);
J
jerrywgz 已提交
58
    T roi_scale = sqrt(roi_area);
59
    int tgt_lvl = floor(
60
        log2(roi_scale / static_cast<T>(refer_scale) + (T)1e-8) + refer_level);
J
jerrywgz 已提交
61 62
    tgt_lvl = min(max_level, max(tgt_lvl, min_level));
    target_lvls[i] = tgt_lvl;
J
jerrywgz 已提交
63
    // compute number of rois in the same batch and same target level
64 65
    platform::CudaAtomicAdd(
        sub_lod_list + (tgt_lvl - min_level) * lod_size + roi_batch_ind, 1);
J
jerrywgz 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  }
}

template <typename DeviceContext, typename T>
class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* fpn_rois = ctx.Input<paddle::framework::LoDTensor>("FpnRois");

    auto multi_fpn_rois = ctx.MultiOutput<LoDTensor>("MultiFpnRois");
    auto* restore_index = ctx.Output<Tensor>("RestoreIndex");

    const int min_level = ctx.Attr<int>("min_level");
    const int max_level = ctx.Attr<int>("max_level");
    const int refer_level = ctx.Attr<int>("refer_level");
    const int refer_scale = ctx.Attr<int>("refer_scale");
82
    const bool pixel_offset = ctx.Attr<bool>("pixel_offset");
J
jerrywgz 已提交
83 84 85
    int num_level = max_level - min_level + 1;

    // check that the fpn_rois is not empty
86 87 88 89 90 91
    if (!ctx.HasInput("RoisNum")) {
      PADDLE_ENFORCE_EQ(
          fpn_rois->lod().size(), 1UL,
          platform::errors::InvalidArgument("DistributeFpnProposalsOp needs LoD"
                                            "with one level"));
    }
J
jerrywgz 已提交
92

93 94 95 96 97 98 99
    std::vector<size_t> fpn_rois_lod;
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num = ctx.Input<Tensor>("RoisNum");
      fpn_rois_lod = GetLodFromRoisNum(rois_num);
    } else {
      fpn_rois_lod = fpn_rois->lod().back();
    }
J
jerrywgz 已提交
100 101 102 103 104
    int lod_size = fpn_rois_lod.size() - 1;
    int roi_num = fpn_rois_lod[lod_size];

    auto& dev_ctx = ctx.template device_context<DeviceContext>();

J
jerrywgz 已提交
105
    // get batch id by lod in CPU
J
jerrywgz 已提交
106 107 108 109 110 111 112 113 114
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({roi_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
    for (int n = 0; n < lod_size; ++n) {
      for (size_t i = fpn_rois_lod[n]; i < fpn_rois_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
J
jerrywgz 已提交
115
    // copy batch id list to GPU
J
jerrywgz 已提交
116 117 118 119 120 121 122
    Tensor roi_batch_id_list_gpu;
    framework::TensorCopySync(roi_batch_id_list, dev_ctx.GetPlace(),
                              &roi_batch_id_list_gpu);

    Tensor sub_lod_list;
    sub_lod_list.Resize({num_level, lod_size});
    int* sub_lod_list_data = sub_lod_list.mutable_data<int>(dev_ctx.GetPlace());
123 124 125
    math::SetConstant<platform::CUDADeviceContext, int> set_zero;
    set_zero(dev_ctx, &sub_lod_list, static_cast<int>(0));

J
jerrywgz 已提交
126 127 128 129
    Tensor target_lvls;
    target_lvls.Resize({roi_num});
    int* target_lvls_data = target_lvls.mutable_data<int>(dev_ctx.GetPlace());

130
    int dist_blocks = NumBlocks(roi_num);
J
jerrywgz 已提交
131
    int threads = kNumCUDAThreads;
J
jerrywgz 已提交
132
    // get target levels and sub_lod list
133
    GPUDistFpnProposalsHelper<T><<<dist_blocks, threads>>>(
J
jerrywgz 已提交
134 135
        roi_num, fpn_rois->data<T>(), lod_size, refer_level, refer_scale,
        max_level, min_level, roi_batch_id_list_gpu.data<int>(),
136
        sub_lod_list_data, target_lvls_data, pixel_offset);
137
    dev_ctx.Wait();
138
    auto place = BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace());
J
jerrywgz 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151

    Tensor index_in_t;
    int* idx_in = index_in_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx, roi_num);
    for_range(RangeInitFunctor{0, 1, idx_in});

    Tensor keys_out_t;
    int* keys_out = keys_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());
    Tensor index_out_t;
    int* idx_out = index_out_t.mutable_data<int>({roi_num}, dev_ctx.GetPlace());

    // Determine temporary device storage requirements
    size_t temp_storage_bytes = 0;
152 153 154 155 156
#ifdef PADDLE_WITH_HIP
    hipcub::DeviceRadixSort::SortPairs<int, int>(nullptr, temp_storage_bytes,
                                                 target_lvls_data, keys_out,
                                                 idx_in, idx_out, roi_num);
#else
157 158 159
    cub::DeviceRadixSort::SortPairs<int, int>(nullptr, temp_storage_bytes,
                                              target_lvls_data, keys_out,
                                              idx_in, idx_out, roi_num);
160
#endif
J
jerrywgz 已提交
161
    // Allocate temporary storage
162
    auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
J
jerrywgz 已提交
163

164 165 166 167 168 169 170
// Run sorting operation
// sort target level to get corresponding index
#ifdef PADDLE_WITH_HIP
    hipcub::DeviceRadixSort::SortPairs<int, int>(
        d_temp_storage->ptr(), temp_storage_bytes, target_lvls_data, keys_out,
        idx_in, idx_out, roi_num);
#else
171
    cub::DeviceRadixSort::SortPairs<int, int>(
J
jerrywgz 已提交
172 173
        d_temp_storage->ptr(), temp_storage_bytes, target_lvls_data, keys_out,
        idx_in, idx_out, roi_num);
174
#endif
J
jerrywgz 已提交
175 176 177

    int* restore_idx_data =
        restore_index->mutable_data<int>({roi_num, 1}, dev_ctx.GetPlace());
178 179 180 181 182 183
// sort current index to get restore index
#ifdef PADDLE_WITH_HIP
    hipcub::DeviceRadixSort::SortPairs<int, int>(
        d_temp_storage->ptr(), temp_storage_bytes, idx_out, keys_out, idx_in,
        restore_idx_data, roi_num);
#else
184
    cub::DeviceRadixSort::SortPairs<int, int>(
J
jerrywgz 已提交
185 186
        d_temp_storage->ptr(), temp_storage_bytes, idx_out, keys_out, idx_in,
        restore_idx_data, roi_num);
187
#endif
J
jerrywgz 已提交
188

189
    int start = 0;
190 191
    auto multi_rois_num = ctx.MultiOutput<Tensor>("MultiLevelRoIsNum");

J
jerrywgz 已提交
192 193 194
    for (int i = 0; i < num_level; ++i) {
      Tensor sub_lod = sub_lod_list.Slice(i, i + 1);
      int* sub_lod_data = sub_lod.data<int>();
J
jerrywgz 已提交
195
      // transfer length-based lod to offset-based lod
196 197 198 199 200 201 202 203
      std::vector<size_t> offset(1, 0);
      std::vector<int> sub_lod_cpu(lod_size);
      memory::Copy(platform::CPUPlace(), sub_lod_cpu.data(), place,
                   sub_lod_data, sizeof(int) * lod_size, dev_ctx.stream());
      dev_ctx.Wait();
      for (int j = 0; j < lod_size; ++j) {
        offset.emplace_back(offset.back() + sub_lod_cpu[j]);
      }
J
jerrywgz 已提交
204

205 206 207 208 209 210 211 212 213 214 215 216 217
      int sub_rois_num = offset.back();

      int end = start + sub_rois_num;
      if (end > start) {
        Tensor sub_idx = index_out_t.Slice(start, end);
        start = end;
        multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                           dev_ctx.GetPlace());
        GPUGather<T>(dev_ctx, *fpn_rois, sub_idx, multi_fpn_rois[i]);
      } else {
        multi_fpn_rois[i]->mutable_data<T>({sub_rois_num, kBoxDim},
                                           dev_ctx.GetPlace());
      }
218 219 220 221 222
      if (multi_rois_num.size() > 0) {
        Tensor* rois_num_t = multi_rois_num[i];
        TensorCopySync(sub_lod, dev_ctx.GetPlace(), rois_num_t);
        rois_num_t->Resize({lod_size});
      }
J
jerrywgz 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
      framework::LoD lod;
      lod.emplace_back(offset);
      multi_fpn_rois[i]->set_lod(lod);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    distribute_fpn_proposals,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           float>,
    ops::GPUDistributeFpnProposalsOpKernel<paddle::platform::CUDADeviceContext,
                                           double>);