“f0dd1201ccd020fba532eba86010c4416e80eb7e”上不存在“paddle/fluid/platform/lodtensor_printer.h”
test_rmsprop_op.py 2.4 KB
Newer Older
1 2 3 4 5
import unittest
import numpy as np
from op_test import OpTest


6 7 8 9
class TestRmspropOp1(OpTest):
    ''' Test RMSProp with explicit inputs
    '''

10 11 12 13
    def setUp(self):
        self.op_type = "rmsprop"

        param = np.random.random((123, 321)).astype("float32")
14 15
        mean_square = np.random.random((123, 321)).astype("float32")
        learning_rate = np.array([0.01]).astype("float32")
16 17 18 19
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")

        epsilon = 1e-6
20 21
        decay = 0.9
        momentum = 0.0
22

K
Kavya Srinet 已提交
23 24
        self.inputs = {
            'Param': param,
25 26
            'MeanSquare': mean_square,
            'LearningRate': learning_rate,
K
Kavya Srinet 已提交
27 28
            'Grad': grad,
            'Moment': moment,
29 30
        }

31
        self.attrs = {'epsilon': epsilon, 'decay': decay, 'momentum': momentum}
K
Kavya Srinet 已提交
32

33 34 35 36
        ms_out = decay * mean_square + (1 - decay) * grad * grad
        moment_out = momentum * moment + \
            learning_rate * grad / np.sqrt(ms_out + epsilon)
        param_out = param - moment_out
37

38 39 40 41 42
        self.outputs = {
            'ParamOut': param_out,
            'MomentOut': moment_out,
            'MeanSquareOut': ms_out
        }
43 44 45 46 47

    def test_check_output(self):
        self.check_output()


48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
class TestRmspropOp2(OpTest):
    '''Test RMSProp with defaukt values for attributes
    '''

    def setUp(self):
        self.op_type = "rmsprop"

        param = np.random.random((123, 321)).astype("float32")
        mean_square = np.random.random((123, 321)).astype("float32")
        learning_rate = np.array([0.01]).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")

        epsilon = 1.0e-10
        decay = 0.9
        momentum = 0.0

        self.inputs = {
            'Param': param,
            'MeanSquare': mean_square,
            'LearningRate': learning_rate,
            'Grad': grad,
            'Moment': moment,
        }

        ms_out = decay * mean_square + (1 - decay) * grad * grad
        moment_out = momentum * moment + \
            learning_rate * grad / np.sqrt(ms_out + epsilon)
        param_out = param - moment_out

        self.outputs = {
            'ParamOut': param_out,
            'MomentOut': moment_out,
            'MeanSquareOut': ms_out
        }

    def test_check_output(self):
        self.check_output()


88 89
if __name__ == "__main__":
    unittest.main()