pybind.cc 38.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
D
dzhwinter 已提交
37
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
41 42 43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
45 46
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
47
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/pybind/tensor_py.h"
W
wangguibao 已提交
49
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yu Yang 已提交
50

51
#include "paddle/fluid/string/to_string.h"
52

D
Dong Zhihong 已提交
53
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
54 55 56
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
57 58
#endif

M
minqiyang 已提交
59 60
#include "pybind11/stl.h"

61 62 63 64
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
65 66 67
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

68
namespace paddle {
69
namespace pybind {
70
bool IsCompiledWithCUDA() {
71
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
72 73 74 75 76 77
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
78
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
79
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
80 81 82 83 84 85
  return true;
#else
  return false;
#endif
}

86 87
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
88

89 90 91 92
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

93
  BindException(&m);
Y
Yu Yang 已提交
94

95 96 97
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
98
      .def("_get_dims",
99
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
100
      .def("_set_dims",
Q
qijun 已提交
101
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
102
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
103
           })
Y
yuyang18 已提交
104
      .def("_set_layout",
D
dzhwinter 已提交
105 106 107
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
108
      .def("_alloc_float",
D
dzhwinter 已提交
109
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
110
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
111
           })
Y
yuyang18 已提交
112
      .def("_alloc_float",
Y
Yu Yang 已提交
113
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
114
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
115
           })
Y
yuyang18 已提交
116
      .def("_alloc_int",
Y
Yu Yang 已提交
117
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
118
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
119
           })
Y
yuyang18 已提交
120
      .def("_alloc_int",
D
dzhwinter 已提交
121
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
122
             self.mutable_data<int>(place);
Q
qijun 已提交
123
           })
Y
yuyang18 已提交
124
      .def("_alloc_int",
C
chengduoZH 已提交
125 126 127
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
128
      .def("_alloc_float",
C
chengduoZH 已提交
129 130 131
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
132 133
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
134
      .def("set", PyCPUTensorSetFromArray<double>)
135
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
136
      .def("set", PyCPUTensorSetFromArray<bool>)
137
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
138
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
139
      .def("set", PyCPUTensorSetFromArray<int8_t>)
140
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
141 142
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
143
      .def("set", PyCUDATensorSetFromArray<double>)
144
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
145
      .def("set", PyCUDATensorSetFromArray<bool>)
146
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
147
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
148
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
149 150 151 152 153 154
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
155
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
156
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
157
#endif
158
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
159 160 161 162 163
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
164

X
Xin Pan 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
178
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
179
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
180
     columns, hence [5, 2].
X
Xin Pan 已提交
181 182 183

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
184 185
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
209 210
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
211 212 213 214 215 216 217 218 219 220 221 222 223 224
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
225
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
226 227 228 229 230
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
231
      .def("set_lod",
232
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
233
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
234
             LoD new_lod;
235 236
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
237 238
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
239
             self.set_lod(new_lod);
D
dangqingqing 已提交
240
           })
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
266
      // Set above comments of set_lod.
267 268 269 270 271 272 273 274 275 276 277 278 279
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
280 281
      });

Q
qijun 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
295 296 297 298 299 300 301 302 303
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
304
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
305
      .def("rows", [](SelectedRows &self) {
306 307 308 309 310
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
311
      });
Q
qijun 已提交
312

313
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
314 315 316

All parameter, weight, gradient are variables in Paddle.
)DOC")
317
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
318
      .def("set_int",
319 320
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
321 322 323 324 325 326 327
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
328
      .def("get_tensor",
329 330
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
331 332
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
333 334 335
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
336 337 338 339 340
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
341 342 343
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
344 345 346 347 348 349 350
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
351 352 353 354 355
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
356
           py::return_value_policy::reference);
357

Y
Refine  
Yu Yang 已提交
358
  py::class_<framework::ReaderHolder>(m, "Reader", "")
359
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
360

S
sneaxiy 已提交
361 362 363 364
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
365 366
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
367
      .def("push",
S
sneaxiy 已提交
368
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
369
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
370
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
371
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
372
           })
S
sneaxiy 已提交
373 374 375 376
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
377

S
sneaxiy 已提交
378
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
379
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
380
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
381
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
382 383 384 385 386 387
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
388 389
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
390
              return holder->GetQueue();
S
sneaxiy 已提交
391
            },
S
sneaxiy 已提交
392
        py::return_value_policy::copy);
S
sneaxiy 已提交
393

394
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
395
      .def("var",
396
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
397
             return self.Var(name);
Y
Yu Yang 已提交
398
           },
399
           py::return_value_policy::reference)
400
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
401
      .def(py::init<>())
402
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
403
           py::return_value_policy::reference)
Y
Yu Yang 已提交
404
      .def("drop_kids", &Scope::DropKids);
405

Y
Yu Yang 已提交
406 407
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
408 409
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
410 411 412 413 414 415 416 417 418 419
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
420 421
    return ret_values;
  });
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
438
  m.def("prune", [](const ProgramDesc &origin,
439
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
440
    ProgramDesc prog_with_targets(origin);
441
    for (const auto &t : targets) {
442
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
443
    }
444
    proto::ProgramDesc pruned_desc;
445
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
446
    return new ProgramDesc(pruned_desc);
447
  });
448 449 450 451
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
452 453 454
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
455 456
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
457
  // clang-format off
Y
Yu Yang 已提交
458
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
459 460
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
461
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
462 463 464
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
465
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
466
                      -> paddle::platform::DeviceContext* {
467
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
468
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
469
#else
Q
qijun 已提交
470
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
471
#endif
C
chengduoZH 已提交
472 473 474 475 476 477 478 479 480 481 482
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
483 484 485 486
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
487
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
488
      .def(py::init<int>())
D
dzhwinter 已提交
489
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
490

491 492 493
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
494

C
chengduoZH 已提交
495 496 497 498
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
499 500 501 502 503 504 505
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
506
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
507
             self = gpu_place;
C
chengduoZH 已提交
508 509
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
510 511
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
512
      });
Y
Yu Yang 已提交
513

Y
Yu Yang 已提交
514 515 516
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
517
                    proto::OpDesc desc;
Y
Yu Yang 已提交
518 519 520 521 522
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
523
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
524
                  })
525
      .def("run",
526
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
527 528 529
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
530
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
531 532 533 534 535
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
536 537 538 539 540 541 542
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
543 544
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
545
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
546
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
547 548 549 550
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
551

F
fengjiayi 已提交
552
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
553
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
554
      .def("close", &Executor::Close)
S
sneaxiy 已提交
555 556 557 558 559
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
560

D
dzhwinter 已提交
561
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
562
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
563 564
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
565

566
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
567
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
568 569 570 571 572 573
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
574

575
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
576
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
577

X
Xin Pan 已提交
578 579
  m.def("_is_program_version_supported", IsProgramVersionSupported);

580 581 582 583 584
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
585

Y
Yu Yang 已提交
586 587 588 589 590 591 592 593 594
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
595
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
596 597
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
614 615 616
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
617
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
618
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
619
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
620 621 622 623

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
624
#endif
Y
Yu Yang 已提交
625

626 627 628 629
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
630
      .value("kAll", platform::ProfilerState::kAll)
631 632 633 634 635 636 637 638 639 640 641 642 643
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
644
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
645
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
646

647 648
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
649 650 651 652 653 654 655
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
      .def("set_int", [](ir::Pass &self, const std::string &name, int val) {
        self.Set<const int>(name, new int(val));
656 657
      });

X
fix  
Xin Pan 已提交
658 659
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
660 661 662 663 664 665 666 667 668 669 670 671 672 673
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
674
  // -- python binds for parallel executor.
Y
yuyang18 已提交
675
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
676 677 678 679
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
680 681 682 683 684 685 686 687 688 689 690
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
691 692 693

        )DOC");

Y
yuyang18 已提交
694
  exec_strategy.def(py::init())
Y
yuyang18 已提交
695 696 697 698 699
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
700 701 702 703 704 705 706 707 708 709
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
710
      .def_property(
711 712 713 714
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
715 716 717 718
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
719 720 721 722 723
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
724 725 726 727
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
728 729 730 731 732 733 734
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
735 736 737 738 739 740 741 742 743 744 745
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
746 747 748 749 750 751
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
752

Y
yuyang18 已提交
753
  exec_strategy.def_property(
Y
yuyang18 已提交
754 755 756 757 758 759 760
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
761 762
      });

C
chengduo 已提交
763 764 765 766
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
767 768 769 770 771 772 773 774 775 776 777
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
778
)DOC");
Y
yuyang18 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
C
chengduo 已提交
796 797 798 799 800 801 802
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
803 804 805 806 807 808
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
C
chengduo 已提交
809 810 811 812 813 814
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
815 816 817 818 819
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
820 821 822 823
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
824 825 826
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
827 828 829
          [](BuildStrategy &self, bool b) {
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
848 849 850 851 852 853 854 855 856 857 858
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
859
      .def("_create_passes_from_strategy",
X
fix  
Xin Pan 已提交
860 861 862
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
             return self.CreatePassesFromStrategy();
           });
Y
yuyang18 已提交
863 864 865 866

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
867
                  const std::string &, Scope *, std::vector<Scope *> &,
868 869
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
870 871 872 873
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
874 875 876 877 878
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
879 880 881 882
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
883 884 885 886 887 888
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
889

890
  BindRecordIOWriter(&m);
W
wangguibao 已提交
891
  BindAsyncExecutor(&m);
892
  return m.ptr();
L
Luo Tao 已提交
893
}
894
}  // namespace pybind
895
}  // namespace paddle