anakin_mobilenet_tester.cc 2.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
cuichaowen 已提交
15
#include <glog/logging.h>
Y
Yan Chunwei 已提交
16 17
#include <gtest/gtest.h>

C
cuichaowen 已提交
18
#include "gflags/gflags.h"
19
#include "paddle/fluid/inference/api/paddle_inference_api.h"
C
cuichaowen 已提交
20

C
cuichaowen 已提交
21
DEFINE_string(model, "", "Directory of the inference model(mobile_v2).");
Y
Yan Chunwei 已提交
22

Y
Yan Chunwei 已提交
23 24
namespace paddle {

C
cuichaowen 已提交
25
AnakinConfig GetConfig() {
Y
Yan Chunwei 已提交
26
  AnakinConfig config;
C
cuichaowen 已提交
27 28
  // using AnakinConfig::X86 if you need to use cpu to do inference
  config.target_type = AnakinConfig::NVGPU;
Y
Yan Chunwei 已提交
29
  config.model_file = FLAGS_model;
C
cuichaowen 已提交
30 31 32 33
  config.device = 0;
  config.max_batch_size = 1;
  return config;
}
Y
Yan Chunwei 已提交
34

C
cuichaowen 已提交
35 36 37
TEST(inference, anakin) {
  AnakinConfig config = GetConfig();
  auto predictor =
Y
Yan Chunwei 已提交
38
      CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(config);
C
cuichaowen 已提交
39 40

  float data[1 * 3 * 224 * 224] = {1.0f};
Y
Yan Chunwei 已提交
41 42 43 44 45
  PaddleTensor tensor;
  tensor.name = "input_0";
  tensor.shape = std::vector<int>({1, 3, 224, 224});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::FLOAT32;
C
cuichaowen 已提交
46 47

  // For simplicity, we set all the slots with the same data.
C
cuichaowen 已提交
48
  std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
C
cuichaowen 已提交
49

Y
Yan Chunwei 已提交
50 51
  PaddleTensor tensor_out;
  tensor_out.name = "prob_out";
C
cuichaowen 已提交
52
  tensor_out.shape = std::vector<int>({});
Y
Yan Chunwei 已提交
53 54
  tensor_out.data = PaddleBuf();
  tensor_out.dtype = PaddleDType::FLOAT32;
C
cuichaowen 已提交
55

C
cuichaowen 已提交
56
  std::vector<PaddleTensor> outputs(1, tensor_out);
C
cuichaowen 已提交
57 58 59

  ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));

60
  float* data_o = static_cast<float*>(outputs[0].data.data());
C
cuichaowen 已提交
61
  for (size_t j = 0; j < outputs[0].data.length(); ++j) {
C
cuichaowen 已提交
62 63
    LOG(INFO) << "output[" << j << "]: " << data_o[j];
  }
Y
Yan Chunwei 已提交
64 65 66
}

}  // namespace paddle