test_detection.py 21.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import paddle.fluid as fluid
import paddle.fluid.layers as layers
19
from paddle.fluid.layers import detection
20
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
21
import unittest
22 23


24
class TestDetection(unittest.TestCase):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
40
                shape=[2, 10, 4],
41 42 43 44
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
45
                shape=[2, 10, 20],
46 47 48 49
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
50 51 52 53 54 55
            out2, index = layers.detection_output(
                scores=scores,
                loc=loc,
                prior_box=pb,
                prior_box_var=pbv,
                return_index=True)
56
            self.assertIsNotNone(out)
57 58
            self.assertIsNotNone(out2)
            self.assertIsNotNone(index)
59
            self.assertEqual(out.shape[-1], 6)
60
        print(str(program))
61

J
jerrywgz 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size')
            self.assertIsNotNone(bcoder)
        print(str(program))

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

108
        print(str(program))
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
132
        print(str(program))
133 134


135 136
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
153 154


R
ruri 已提交
155 156
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50., 60.],
                fixed_ratios=[1.0],
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
173 174


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


193 194
class TestGenerateProposalLabels(unittest.TestCase):
    def test_generate_proposal_labels(self):
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        program = Program()
        with program_guard(program):
            rpn_rois = layers.data(
                name='rpn_rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[6, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            class_nums = 5
228
            outs = fluid.layers.generate_proposal_labels(
229 230 231 232 233 234 235 236 237 238 239 240
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=class_nums)
241 242 243 244 245
            rois = outs[0]
            labels_int32 = outs[1]
            bbox_targets = outs[2]
            bbox_inside_weights = outs[3]
            bbox_outside_weights = outs[4]
246 247 248 249 250 251 252 253
            assert rois.shape[1] == 4
            assert rois.shape[0] == labels_int32.shape[0]
            assert rois.shape[0] == bbox_targets.shape[0]
            assert rois.shape[0] == bbox_inside_weights.shape[0]
            assert rois.shape[0] == bbox_outside_weights.shape[0]
            assert bbox_targets.shape[1] == 4 * class_nums
            assert bbox_inside_weights.shape[1] == 4 * class_nums
            assert bbox_outside_weights.shape[1] == 4 * class_nums
254 255


256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False)
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            num_classes = 5
            resolution = 14
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution)
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
312 313
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
314
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
315
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
316 317 318 319

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
320
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
321 322

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
323 324
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
325 326 327 328 329
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
330

C
chengduoZH 已提交
331
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
332 333
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
334
            num_classes=21,
C
chengduoZH 已提交
335 336 337 338 339 340 341
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
342

C
chengduoZH 已提交
343
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
344 345


346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

361
            map_out = detection.detection_map(detect_res, label, 21)
362 363
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
364
        print(str(program))
365 366


367 368 369 370
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
371 372
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
373 374
            anchor_shape = [50, 4]

375 376 377
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
378 379
                append_batch_size=False,
                dtype='float32')
380 381 382
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
383 384 385 386 387 388 389 390 391 392 393 394
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
395 396 397 398
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
399
                shape=[1, 10],
400 401 402 403 404 405 406 407 408
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
409
            outs = layers.rpn_target_assign(
410 411
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
412 413
                anchor_box=anchor_box,
                anchor_var=anchor_var,
414 415 416
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
417
                rpn_batch_size_per_im=256,
418 419
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
420
                rpn_positive_overlap=0.7,
J
jerrywgz 已提交
421 422
                rpn_negative_overlap=0.3,
                use_random=False)
423 424 425 426 427
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
428

429 430 431 432
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
433
            self.assertIsNotNone(bbox_inside_weight)
434 435 436
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
437
            print(str(program))
438 439


440 441
class TestGenerateProposals(unittest.TestCase):
    def test_generate_proposals(self):
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        program = Program()
        with program_guard(program):
            data_shape = [20, 64, 64]
            images = fluid.layers.data(
                name='images', shape=data_shape, dtype='float32')
            im_info = fluid.layers.data(
                name='im_info', shape=[3], dtype='float32')
            anchors, variances = fluid.layers.anchor_generator(
                name='anchor_generator',
                input=images,
                anchor_sizes=[32, 64],
                aspect_ratios=[1.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
            num_anchors = anchors.shape[2]
            scores = fluid.layers.data(
                name='scores', shape=[num_anchors, 8, 8], dtype='float32')
            bbox_deltas = fluid.layers.data(
                name='bbox_deltas',
                shape=[num_anchors * 4, 8, 8],
                dtype='float32')
            rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
                name='generate_proposals',
                scores=scores,
                bbox_deltas=bbox_deltas,
                im_info=im_info,
                anchors=anchors,
                variances=variances,
                pre_nms_top_n=6000,
                post_nms_top_n=1000,
                nms_thresh=0.5,
                min_size=0.1,
                eta=1.0)
            self.assertIsNotNone(rpn_rois)
            self.assertIsNotNone(rpn_roi_probs)
            print(rpn_rois.shape)
479 480


D
dengkaipeng 已提交
481 482 483 484 485
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
486 487 488
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
489 490
            loss = layers.yolov3_loss(
                x,
491 492
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
493 494 495
                10,
                0.7,
                32,
496
                gt_score=gt_score,
497
                use_label_smooth=False)
D
dengkaipeng 已提交
498 499 500

            self.assertIsNotNone(loss)

D
dengkaipeng 已提交
501 502 503 504
    def test_yolo_box(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
D
dengkaipeng 已提交
505
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
506 507
            boxes, scores = layers.yolo_box(x, img_size, [10, 13, 30, 13], 10,
                                            0.01, 32)
D
dengkaipeng 已提交
508 509 510
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

D
dengkaipeng 已提交
511

J
jerrywgz 已提交
512 513 514 515 516 517 518 519 520 521
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
522

J
jerrywgz 已提交
523 524 525 526 527 528 529
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
530
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
531 532
            self.assertIsNotNone(output)

J
jerrywgz 已提交
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
class TestMulticlassNMS2(unittest.TestCase):
    def test_multiclass_nms2(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
            output = layers.multiclass_nms2(bboxes, scores, 0.3, 400, 200, 0.7)
            output2, index = layers.multiclass_nms2(
                bboxes, scores, 0.3, 400, 200, 0.7, return_index=True)
            self.assertIsNotNone(output)
            self.assertIsNotNone(output2)
            self.assertIsNotNone(index)


549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
class TestCollectFpnPropsals(unittest.TestCase):
    def test_collect_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
                bboxes = layers.data(
                    name='rois' + str(i),
                    shape=[10, 4],
                    dtype='float32',
                    lod_level=1,
                    append_batch_size=False)
                scores = layers.data(
                    name='scores' + str(i),
                    shape=[10, 1],
                    dtype='float32',
                    lod_level=1,
                    append_batch_size=False)
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            fpn_rois = layers.collect_fpn_proposals(multi_bboxes, multi_scores,
                                                    2, 5, 10)
            self.assertIsNotNone(fpn_rois)


575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
class TestDistributeFpnProposals(unittest.TestCase):
    def test_distribute_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = layers.distribute_fpn_proposals(
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)
            self.assertIsNotNone(multi_rois)
            self.assertIsNotNone(restore_ind)


591 592
if __name__ == '__main__':
    unittest.main()