fusion_lstm_op.cc 22.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_lstm_op.h"
T
tensor-tang 已提交
16
#include <string>
17
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
19
#include "paddle/fluid/operators/math/fc.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
T
tensor-tang 已提交
24

T
tensor-tang 已提交
25 26 27 28
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
29 30 31 32 33 34 35
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("Cell"), "Output", "Cell", "fusion_lstm");
T
tensor-tang 已提交
36

T
tensor-tang 已提交
37
  auto x_dims = ctx->GetInputDim("X");
38 39 40 41 42
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    platform::errors::InvalidArgument(
                        "Input(X)'s rank must be 2, but received x's rank "
                        "is:%d, x dim is:[%s]",
                        x_dims.size(), x_dims));
T
tensor-tang 已提交
43

44
  if (ctx->HasInput("H0")) {
45
    OP_INOUT_CHECK(ctx->HasInput("C0"), "Input", "C0", "fusion_lstm");
T
tensor-tang 已提交
46 47
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
48 49 50 51 52
    PADDLE_ENFORCE_EQ(h_dims, c_dims,
                      platform::errors::InvalidArgument(
                          "The dimension of Input(H0) and Input(C0) should be "
                          "same, but received h0 dims is:[%s], c0 dims is:[%s]",
                          h_dims, c_dims));
T
tensor-tang 已提交
53 54
  }

T
tensor-tang 已提交
55 56
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
57 58 59 60
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX's rank is:%d, WeightX dim is:[%s]",
                        wx_dims.size(), wx_dims));
T
tensor-tang 已提交
61
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
62 63 64 65 66
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(WeightX) "
                        "should equal to second dimension of Input(X), but "
                        "received WeightX first dim is:%d, X second dim is:%d",
                        wx_dims[0], x_dims[1]));
T
tensor-tang 已提交
67 68 69

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
70

T
tensor-tang 已提交
71
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
72 73 74 75
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH rank is:%d, WeightH dim is:[%s]",
                        wh_dims.size(), wh_dims));
T
tensor-tang 已提交
76
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
77 78 79 80 81 82
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(WeightH) "
                        "should equal to frame size, but received WeightH "
                        "first dim is:%d, frame size is:%d.",
                        wh_dims[0], frame_size));

T
tensor-tang 已提交
83
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
84 85 86 87 88
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 4 * frame_size, but received WeightH "
                        "second dimension is:%d, frame size is:%d.",
                        wh_dims[1], frame_size));
T
tensor-tang 已提交
89 90

  auto b_dims = ctx->GetInputDim("Bias");
91 92 93 94 95
  PADDLE_ENFORCE_EQ(b_dims.size(), 2,
                    platform::errors::InvalidArgument(
                        "The rank of Input(Bias) should be 2, but received "
                        "Bias rank is:%d, Bias dim is:[%s]",
                        b_dims.size(), b_dims));
T
tensor-tang 已提交
96
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
97 98 99 100 101
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(Bias) should be 1, but "
                        "received Bias's dimension is:[%s]",
                        b_dims));

T
tensor-tang 已提交
102 103
  if (ctx->Attrs().Get<bool>("use_peepholes")) {
    PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
104 105 106 107 108
                      platform::errors::InvalidArgument(
                          "The second dimension of Input(Bias) should be "
                          "7 * %d if enable peepholes connection, but received "
                          "Bias dim is:[%s]",
                          frame_size, b_dims));
T
tensor-tang 已提交
109 110
    ctx->SetOutputDim("CheckedCell", {2, frame_size});
  } else {
111 112 113 114 115 116
    PADDLE_ENFORCE_EQ(
        b_dims[1], 4 * frame_size,
        platform::errors::InvalidArgument(
            "The second dimension of Input(Bias) should be "
            "4 * %d if disable peepholes, but received Bias dim is:[%s]",
            frame_size, b_dims));
T
tensor-tang 已提交
117
  }
T
tensor-tang 已提交
118

T
tensor-tang 已提交
119
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
120 121
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
122 123
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
124
  int xx_width;
T
tensor-tang 已提交
125
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
126 127 128
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
129 130 131 132 133 134 135 136 137 138 139 140

    OP_INOUT_CHECK(ctx->HasOutput("BatchedInput"), "Output", "BatchedInput",
                   "fusion_lstm");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedHidden"), "Output", "BatchedHidden",
                   "fusion_lstm");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedCell"), "Output", "BatchedCell",
                   "fusion_lstm");
    OP_INOUT_CHECK(ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0",
                   "fusion_lstm");
    OP_INOUT_CHECK(ctx->HasOutput("ReorderedC0"), "Output", "ReorderedC0",
                   "fusion_lstm");

T
tensor-tang 已提交
141 142 143
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
144
  }
T
tensor-tang 已提交
145 146
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
147 148 149 150
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
151 152 153 154 155 156 157 158 159 160
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
  if (this->CanMKLDNNBeUsed(ctx, data_type)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
#endif
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
T
tensor-tang 已提交
161 162 163
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
164
  AddInput("X",
T
tensor-tang 已提交
165
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
166
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
167 168 169 170 171 172 173 174 175
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
176 177 178
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
179 180
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
181 182 183 184 185 186 187 188
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
189 190 191 192 193 194 195 196 197 198 199 200
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
201
  AddOutput("Hidden",
T
tensor-tang 已提交
202
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
203 204
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
205
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
206
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
207
  AddOutput("XX",
T
tensor-tang 已提交
208 209 210
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
211 212
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
213 214 215 216 217
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
218 219
  AddOutput("CheckedCell", "(Tensor) (2 x D) only for peephole.")
      .AsIntermediate();
T
tensor-tang 已提交
220
  AddAttr<bool>("use_peepholes",
翟飞跃 已提交
221
                "(bool, default: True) "
T
tensor-tang 已提交
222 223 224
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
225
                "(bool, default: False) "
T
tensor-tang 已提交
226 227
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
228
  AddAttr<bool>("use_seq",
翟飞跃 已提交
229
                "(bool, default: True) "
T
tensor-tang 已提交
230 231
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
232 233 234 235 236 237 238 239
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
翟飞跃 已提交
240
                       "The activation for cell output, `tanh` by default.")
T
tensor-tang 已提交
241 242 243 244 245 246 247 248
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
249 250 251
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
T
tensor-tang 已提交
252
  AddComment(R"DOC(
T
tensor-tang 已提交
253 254
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
255 256 257
)DOC");
}

T
tensor-tang 已提交
258
template <typename T>
T
tensor-tang 已提交
259
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
260
 public:
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
#define INIT_BASE_DEFINES                                   \
  using DeviceContext = paddle::platform::CPUDeviceContext; \
  auto* x = ctx.Input<LoDTensor>("X");                      \
  auto* h0 = ctx.Input<Tensor>("H0");                       \
  auto* c0 = ctx.Input<Tensor>("C0");                       \
  auto* wx = ctx.Input<Tensor>("WeightX");                  \
  auto* wh = ctx.Input<Tensor>("WeightH");                  \
  auto* bias = ctx.Input<Tensor>("Bias");                   \
  auto* xx = ctx.Output<LoDTensor>("XX");                   \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");       \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");           \
  bool is_reverse = ctx.Attr<bool>("is_reverse");           \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");     \
  auto x_dims = x->dims();   /* T x M*/                     \
  auto wh_dims = wh->dims(); /* D x 4D*/                    \
  const int M = x_dims[1];                                  \
  const int D = wh_dims[0];                                 \
  const int D4 = wh_dims[1]

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
#define INIT_OTHER_DEFINES                                                     \
  const T* x_data = x->data<T>();                                              \
  const T* wx_data = wx->data<T>();                                            \
  const T* wh_data = wh->data<T>();                                            \
  /* diagonal weight*/                                                         \
  const T* wp_data = bias->data<T>() + D4;                                     \
  /* for peephole only*/                                                       \
  T* checked_cell_data = nullptr;                                              \
  auto place = ctx.GetPlace();                                                 \
  if (use_peepholes) {                                                         \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/                           \
    auto* checked_cell = ctx.Output<Tensor>("CheckedCell");                    \
    checked_cell_data = checked_cell->mutable_data<T>(place);                  \
  }                                                                            \
  const jit::lstm_attr_t attr(                                                 \
      D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),         \
      jit::to_kerneltype(ctx.Attr<std::string>("candidate_activation")),       \
      jit::to_kerneltype(ctx.Attr<std::string>("cell_activation")),            \
      use_peepholes);                                                          \
  jit::lstm_t one_step;                                                        \
  one_step.wp = wp_data;                                                       \
  one_step.checked = checked_cell_data;                                        \
  auto ComputeC1H1 =                                                           \
      jit::KernelFuncs<jit::LSTMC1H1Tuple<T>, platform::CPUPlace>::Cache().At( \
          attr);                                                               \
  auto ComputeCtHt =                                                           \
      jit::KernelFuncs<jit::LSTMCtHtTuple<T>, platform::CPUPlace>::Cache().At( \
          attr)
308 309

// Wh GEMM
T
tensor-tang 已提交
310 311 312 313
#define GEMM_WH_ADDON(bs, prev, out)                                           \
  blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
            wh_data, D4, static_cast<T>(1), out, D4)

T
tensor-tang 已提交
314
  void SeqCompute(const framework::ExecutionContext& ctx) const {
315 316
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
317
    auto x_lod = x->lod();
T
tensor-tang 已提交
318
    const int total_T = x_dims[0];
T
tensor-tang 已提交
319
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
320 321
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
322
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
323 324
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
325
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
326 327 328 329

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::FCFunctor<DeviceContext, T> fc;
    fc(dev_ctx, total_T, D4, M, x_data, wx_data, xx_data, bias->data<T>());
B
Brian Liu 已提交
330

T
tensor-tang 已提交
331 332 333 334 335
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
336 337
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
338 339 340 341
      xx_offset = -D4;
      gate_offset = -D;
    }

342 343 344 345 346 347 348 349 350 351
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
      const T* prev_c_data = nullptr;
      const T* prev_h_data = nullptr;
      int tstart = 0;
      if (h0_data) {
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
      } else {
352 353 354
        one_step.gates = xx_data;
        one_step.ct = c_out_data;
        one_step.ht = h_out_data;
355
        ComputeC1H1(&one_step, &attr);
356 357 358 359 360 361 362
        tstart = 1;
        // move one step
        prev_h_data = h_out_data;
        prev_c_data = c_out_data;
        xx_data = xx_data + xx_offset;
        h_out_data = h_out_data + gate_offset;
        c_out_data = c_out_data + gate_offset;
T
tensor-tang 已提交
363
      }
364 365
      for (int step = tstart; step < seq_len; ++step) {
        GEMM_WH_ADDON(1, prev_h_data, xx_data);
366 367 368 369 370

        one_step.gates = xx_data;
        one_step.ct_1 = prev_c_data;
        one_step.ct = c_out_data;
        one_step.ht = h_out_data;
371
        ComputeCtHt(&one_step, &attr);
372 373 374 375 376 377
        // move one step
        prev_h_data = h_out_data;
        prev_c_data = c_out_data;
        xx_data = xx_data + xx_offset;
        h_out_data = h_out_data + gate_offset;
        c_out_data = c_out_data + gate_offset;
T
tensor-tang 已提交
378
      }
T
tensor-tang 已提交
379
    }
T
tensor-tang 已提交
380 381 382
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
383
    INIT_BASE_DEFINES;
T
tensor-tang 已提交
384
    if (x->lod()[0].size() == 2) {
385
      xx->Resize({x_dims[0], D4});
T
tensor-tang 已提交
386
      SeqCompute(ctx);
T
tensor-tang 已提交
387
      return;
T
tensor-tang 已提交
388
    }
389
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
390

T
tensor-tang 已提交
391 392 393 394 395 396 397 398 399 400 401
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
402

T
tensor-tang 已提交
403
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
404 405
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
406
    math::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
407
    if (M > D4) {
408
      fc(dev_ctx, x_dims[0], D4, M, x_data, wx_data, xx_data, bias->data<T>());
T
tensor-tang 已提交
409
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
410 411
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
412
      batched_input->set_lod(xx->lod());
413 414
      fc(dev_ctx, x_dims[0], D4, M, xx_data, wx_data, batched_input_data,
         bias->data<T>());
T
tensor-tang 已提交
415 416
    }

T
tensor-tang 已提交
417 418 419 420 421 422 423
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
424 425
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
426 427 428 429 430 431
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
432 433
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
434
      size_t sz = D;
T
tensor-tang 已提交
435
      for (int i = 0; i < max_bs; ++i) {
436 437
        blas.VCOPY(sz, h0_data + seq_order[i] * D, reordered_h0_data);
        blas.VCOPY(sz, c0_data + seq_order[i] * D, reordered_c0_data);
T
tensor-tang 已提交
438 439 440 441
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
442 443 444 445 446
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
447 448 449
        one_step.gates = cur_in_data;
        one_step.ct = cur_c_out_data;
        one_step.ht = cur_h_out_data;
450
        ComputeC1H1(&one_step, &attr);
451

T
tensor-tang 已提交
452 453 454 455 456
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
457 458
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
459
    }
460 461

    // compute kernel part
T
tensor-tang 已提交
462 463
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
464 465 466 467
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;
468 469 470 471 472 473 474 475
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
      T* cur_in_data = batched_input_data;
      T* cur_prev_c_data = prev_c_data;
      T* cur_c_out_data = batched_c_out_data;
      T* cur_h_out_data = batched_h_out_data;
      for (int i = 0; i < cur_bs; ++i) {
476 477 478 479
        one_step.gates = cur_in_data;
        one_step.ct_1 = cur_prev_c_data;
        one_step.ct = cur_c_out_data;
        one_step.ht = cur_h_out_data;
T
tensor-tang 已提交
480
        ComputeCtHt(&one_step, &attr);
481

482 483 484 485 486
        // move one batch
        cur_in_data += D4;
        cur_prev_c_data += D;
        cur_c_out_data += D;
        cur_h_out_data += D;
T
tensor-tang 已提交
487
      }
488 489 490 491 492 493
      // move one step
      prev_c_data = batched_c_out_data;
      prev_h_data = batched_h_out_data;
      batched_c_out_data = cur_c_out_data;
      batched_h_out_data = cur_h_out_data;
      batched_input_data = cur_in_data;
T
tensor-tang 已提交
494 495 496
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
497 498 499 500
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
501
  }
T
tensor-tang 已提交
502

T
tensor-tang 已提交
503
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
504
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
505 506 507 508 509
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
510 511

#undef GEMM_WH_ADDON
512 513
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
514 515 516 517 518 519
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
520
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker);
T
tensor-tang 已提交
521

T
tensor-tang 已提交
522 523
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);