im2col.cc 9.6 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hedaoyuan 已提交
15
#include "paddle/operators/math/im2col.h"
H
hedaoyuan 已提交
16 17

namespace paddle {
18
namespace operators {
19
namespace math {
H
hedaoyuan 已提交
20 21

/*
H
hedaoyuan 已提交
22 23 24
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
25 26
 */
template <class T>
H
hedaoyuan 已提交
27
class Im2ColFunctor<kCFO, platform::CPUPlace, T> {
H
hedaoyuan 已提交
28
 public:
H
hedaoyuan 已提交
29 30
  void operator()(const framework::Tensor& im, framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
31
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);

    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
    int channels_col = input_channels * filter_height * filter_width;

    const T* im_data = im.data<T>();
    T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / filter_width / filter_height;
      for (int h = 0; h < output_height; ++h) {
        for (int w = 0; w < output_width; ++w) {
          int im_row_idx = h * stride_height + h_offset;
          int im_col_idx = w * stride_width + w_offset;
          if ((im_row_idx - padding_height) < 0 ||
              (im_row_idx - padding_height) >= input_height ||
              (im_col_idx - padding_width) < 0 ||
              (im_col_idx - padding_width) >= input_width) {
            col_data[(c * output_height + h) * output_width + w] = T(0);
H
hedaoyuan 已提交
60
          } else {
H
hedaoyuan 已提交
61 62 63 64
            im_row_idx += c_im * input_height - padding_height;
            im_col_idx -= padding_width;
            col_data[(c * output_height + h) * output_width + w] =
                im_data[im_row_idx * input_width + im_col_idx];
H
hedaoyuan 已提交
65 66 67 68 69 70 71 72
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
73 74 75
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height, output_width]
H
hedaoyuan 已提交
76 77
 */
template <class T>
H
hedaoyuan 已提交
78
class Col2ImFunctor<kCFO, platform::CPUPlace, T> {
H
hedaoyuan 已提交
79
 public:
H
hedaoyuan 已提交
80 81
  void operator()(framework::Tensor& im, const framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
82
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int output_height = col.dims()[3];
    int output_width = col.dims()[4];
    int channels_col = input_channels * filter_height * filter_width;

    T* im_data = im.data<T>();
    const T* col_data = col.data<T>();

    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / filter_width / filter_height;
      for (int h = 0; h < output_height; ++h) {
        for (int w = 0; w < output_width; ++w) {
          int im_row_idx = h * stride_height + h_offset;
          int im_col_idx = w * stride_width + w_offset;
          if ((im_row_idx - padding_height) >= 0 &&
              (im_row_idx - padding_height) < input_height &&
              (im_col_idx - padding_width) >= 0 &&
              (im_col_idx - padding_width) < input_width) {
            im_row_idx += c_im * input_height - padding_height;
            im_col_idx -= padding_width;
            im_data[im_row_idx * input_width + im_col_idx] +=
                col_data[(c * output_height + h) * output_width + w];
H
hedaoyuan 已提交
113 114 115 116 117 118 119
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
120 121 122 123
template class Im2ColFunctor<kCFO, platform::CPUPlace, float>;
template class Im2ColFunctor<kCFO, platform::CPUPlace, double>;
template class Col2ImFunctor<kCFO, platform::CPUPlace, float>;
template class Col2ImFunctor<kCFO, platform::CPUPlace, double>;
H
hedaoyuan 已提交
124 125

/*
H
hedaoyuan 已提交
126 127 128
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
129 130
 */
template <class T>
H
hedaoyuan 已提交
131
class Im2ColFunctor<kOCF, platform::CPUPlace, T> {
H
hedaoyuan 已提交
132
 public:
H
hedaoyuan 已提交
133 134
  void operator()(const framework::Tensor& im, framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
135
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];

    const T* im_data = im.data<T>();
    T* col_data = col.data<T>();

    for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
        for (int channel = 0; channel < input_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_row_offset =
                  col_row_idx * stride_height + filter_row_idx - padding_height;
              int im_col_offset =
                  col_col_idx * stride_width + filter_col_idx - padding_width;
              int col_offset = (((col_row_idx * output_width + col_col_idx) *
                                     input_channels +
                                 channel) *
                                    filter_height +
                                filter_row_idx) *
                                   filter_width +
                               filter_col_idx;
              if (im_row_offset < 0 || im_row_offset >= input_height ||
                  im_col_offset < 0 || im_col_offset >= input_width) {
                col_data[col_offset] = T(0);
H
hedaoyuan 已提交
170
              } else {
H
hedaoyuan 已提交
171 172 173 174
                int im_offset =
                    (channel * input_height + im_row_offset) * input_width +
                    im_col_offset;
                col_data[col_offset] = im_data[im_offset];
H
hedaoyuan 已提交
175 176 177 178 179 180 181 182 183 184
              }
            }
          }
        }
      }
    }
  }
};

/*
H
hedaoyuan 已提交
185 186 187
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height, filter_width]
H
hedaoyuan 已提交
188 189
 */
template <class T>
H
hedaoyuan 已提交
190
class Col2ImFunctor<kOCF, platform::CPUPlace, T> {
H
hedaoyuan 已提交
191
 public:
H
hedaoyuan 已提交
192 193
  void operator()(framework::Tensor& im, const framework::Tensor& col,
                  int stride_height, int stride_width, int padding_height,
194
                  int padding_width, platform::DeviceContext* context) {
H
hedaoyuan 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    PADDLE_ENFORCE(im.dims().size() == 3);
    PADDLE_ENFORCE(col.dims().size() == 5);
    int input_channels = im.dims()[0];
    int input_height = im.dims()[1];
    int input_width = im.dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int output_height = col.dims()[0];
    int output_width = col.dims()[1];

    T* im_data = im.data<T>();
    const T* col_data = col.data<T>();

    for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
        for (int channel = 0; channel < input_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_row_offset =
                  col_row_idx * stride_height + filter_row_idx - padding_height;
              int im_col_offset =
                  col_col_idx * stride_width + filter_col_idx - padding_width;
              int col_offset = (((col_row_idx * output_width + col_col_idx) *
                                     input_channels +
                                 channel) *
                                    filter_height +
                                filter_row_idx) *
                                   filter_width +
                               filter_col_idx;
              if (im_row_offset >= 0 && im_row_offset < input_height &&
                  im_col_offset >= 0 && im_col_offset < input_width) {
                int im_offset =
                    (channel * input_height + im_row_offset) * input_width +
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
H
hedaoyuan 已提交
232 233 234 235 236 237 238 239 240
              }
            }
          }
        }
      }
    }
  }
};

H
hedaoyuan 已提交
241 242 243 244
template class Im2ColFunctor<kOCF, platform::CPUPlace, float>;
template class Im2ColFunctor<kOCF, platform::CPUPlace, double>;
template class Col2ImFunctor<kOCF, platform::CPUPlace, float>;
template class Col2ImFunctor<kOCF, platform::CPUPlace, double>;
H
hedaoyuan 已提交
245

246
}  // namespace math
247
}  // namespace operators
H
hedaoyuan 已提交
248
}  // namespace paddle