evaluator.py 8.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
Dong Zhihong 已提交
15
import numpy as np
武毅 已提交
16

17
import layers
Y
Yu Yang 已提交
18 19
from framework import Program, Variable, program_guard
import unique_name
20
from layer_helper import LayerHelper
武毅 已提交
21

22 23 24 25
__all__ = [
    'Accuracy',
    'ChunkEvaluator',
]
Y
Yu Yang 已提交
26 27 28


def _clone_var_(block, var):
D
Dong Zhihong 已提交
29 30 31 32
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
33
        dtype=var.dtype,
D
Dong Zhihong 已提交
34 35 36 37 38
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


D
Dong Zhihong 已提交
39 40
class Evaluator(object):
    """
Y
Yu Yang 已提交
41
    Base Class for all evaluators
42

Y
Yu Yang 已提交
43
    Args:
44
        name(str): The name of evaluator. such as, "accuracy". Used for generate
Y
Yu Yang 已提交
45
            temporary variable name.
46
        main_program(Program, optional): The evaluator should be added to this
Y
Yu Yang 已提交
47
            main_program. Default default_main_program()
48
        startup_program(Program, optional):The parameter should be added to this
Y
Yu Yang 已提交
49
            startup_program. Default default_startup_program()
50

Y
Yu Yang 已提交
51
    Attributes:
52
        states(list): The list of state variables. states will be reset to zero
Y
Yu Yang 已提交
53
            when `reset` is invoked.
54
        metrics(list): The list of metrics variables. They will be calculate
Y
Yu Yang 已提交
55
            every mini-batch
D
Dong Zhihong 已提交
56
    """
武毅 已提交
57

D
Dong Zhihong 已提交
58
    def __init__(self, name, **kwargs):
Y
Yu Yang 已提交
59 60 61 62 63
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
64
        """
Y
Yu Yang 已提交
65
        reset metric states at the begin of each pass/user specified batch
D
Dong Zhihong 已提交
66
        """
Y
Yu Yang 已提交
67 68 69
        if reset_program is None:
            reset_program = Program()

70 71 72 73 74 75
        with program_guard(main_program=reset_program):
            for var in self.states:
                assert isinstance(var, Variable)
                g_var = _clone_var_(reset_program.current_block(), var)
                layers.fill_constant(
                    shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
D
Dong Zhihong 已提交
76

Y
Yu Yang 已提交
77
        executor.run(reset_program)
78

Y
Yu Yang 已提交
79
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
80
        """
Y
Yu Yang 已提交
81
        Evaluate the statistics merged by multiple mini-batches.
D
Dong Zhihong 已提交
82 83
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
84

Y
Yu Yang 已提交
85
    def create_state(self, suffix, dtype, shape):
武毅 已提交
86
        """
87 88
        Create state variable.

Y
Yu Yang 已提交
89
        NOTE: It is not a public API.
90

Y
Yu Yang 已提交
91
        Args:
92
            suffix(str): the state suffix.
93
            dtype(str|core.VarDesc.VarType): the state data type
94
            shape(tuple|list): the shape of state
Y
Yu Yang 已提交
95 96

        Returns: State variable
武毅 已提交
97

D
Dong Zhihong 已提交
98
        """
Y
Yu Yang 已提交
99
        state = self.helper.create_variable(
Y
Yu Yang 已提交
100
            name="_".join([unique_name.generate(self.helper.name), suffix]),
Y
Yu Yang 已提交
101 102 103 104 105
            persistable=True,
            dtype=dtype,
            shape=shape)
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
106

D
Dong Zhihong 已提交
107

G
guosheng 已提交
108 109
class ChunkEvaluator(Evaluator):
    """
110 111
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
G
guosheng 已提交
112 113 114
    numbers.
    """

115 116 117 118 119 120 121 122
    def __init__(
            self,
            input,
            label,
            chunk_scheme,
            num_chunk_types,
            excluded_chunk_types=None, ):
        super(ChunkEvaluator, self).__init__("chunk_eval")
G
guosheng 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

        self.num_infer_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_infer_chunks')
        self.num_label_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_label_chunks')
        self.num_correct_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
138
            excluded_chunk_types=excluded_chunk_types, )
G
guosheng 已提交
139 140
        layers.sums(
            input=[self.num_infer_chunks, num_infer_chunks],
141
            out=self.num_infer_chunks)
G
guosheng 已提交
142 143
        layers.sums(
            input=[self.num_label_chunks, num_label_chunks],
144
            out=self.num_label_chunks)
G
guosheng 已提交
145 146
        layers.sums(
            input=[self.num_correct_chunks, num_correct_chunks],
147
            out=self.num_correct_chunks)
G
guosheng 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
        return np.array(
            [precision], dtype='float32'), np.array(
                [recall], dtype='float32'), np.array(
                    [f1_score], dtype='float32')
171 172 173 174


class EditDistance(Evaluator):
    """
W
wanghaoshuang 已提交
175 176 177 178
    Accumulate edit distance sum and sequence number from mini-batches and
    compute the average edit_distance of all batches.

    Args:
W
wanghaoshuang 已提交
179
        input: the sequences predicted by network.
W
wanghaoshuang 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        label: the target sequences which must has same sequence count
        with input.
        ignored_tokens(list of int): Tokens that should be removed before
        calculating edit distance.

    Example:

        exe = fluid.executor(place)
        distance_evaluator = fluid.Evaluator.EditDistance(input, label)
        for epoch in PASS_NUM:
            distance_evaluator.reset(exe)
            for data in batches:
                loss, sum_distance = exe.run(fetch_list=[cost] + distance_evaluator.metrics)
                avg_distance = distance_evaluator.eval(exe)
            pass_distance = distance_evaluator.eval(exe)

        In the above example:
        'sum_distance' is the sum of the batch's edit distance.
        'avg_distance' is the average of edit distance from the firt batch to the current batch.
        'pass_distance' is the average of edit distance from all the pass.

201 202
    """

W
wanghaoshuang 已提交
203
    def __init__(self, input, label, ignored_tokens=None, **kwargs):
204 205 206 207 208 209
        super(EditDistance, self).__init__("edit_distance", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

        self.total_error = self.create_state(
W
wanghaoshuang 已提交
210
            dtype='float32', shape=[1], suffix='total_error')
211
        self.seq_num = self.create_state(
W
wanghaoshuang 已提交
212 213 214
            dtype='int64', shape=[1], suffix='seq_num')
        error, seq_num = layers.edit_distance(
            input=input, label=label, ignored_tokens=ignored_tokens)
215 216 217 218 219
        #error = layers.cast(x=error, dtype='float32')
        sum_error = layers.reduce_sum(error)
        layers.sums(input=[self.total_error, sum_error], out=self.total_error)
        layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
        self.metrics.append(sum_error)
220 221 222 223 224 225 226

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        with program_guard(main_program=eval_program):
            total_error = _clone_var_(block, self.total_error)
227 228 229
            seq_num = _clone_var_(block, self.seq_num)
            seq_num = layers.cast(x=seq_num, dtype='float32')
            out = layers.elementwise_div(x=total_error, y=seq_num)
230
        return np.array(executor.run(eval_program, fetch_list=[out])[0])