imikolov.py 6.1 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import six
import tarfile
import numpy as np
import collections

from paddle.io import Dataset
23
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

__all__ = ['Imikolov']

URL = 'https://dataset.bj.bcebos.com/imikolov%2Fsimple-examples.tgz'
MD5 = '30177ea32e27c525793142b6bf2c8e2d'


class Imikolov(Dataset):
    """
    Implementation of imikolov dataset.

    Args:
        data_file(str): path to data tar file, can be set None if
            :attr:`download` is True. Default None
        data_type(str): 'NGRAM' or 'SEQ'. Default 'NGRAM'.
        window_size(int): sliding window size for 'NGRAM' data. Default -1.
        mode(str): 'train' 'test' mode. Default 'train'.
        min_word_freq(int): minimal word frequence for building word dictionary. Default 50.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True

    Returns:
        Dataset: instance of imikolov dataset

    Examples:

        .. code-block:: python

52 53
            import paddle
            from paddle.text.datasets import Imikolov
K
Kaipeng Deng 已提交
54

55 56 57
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
58

59 60
                def forward(self, src, trg):
                    return paddle.sum(src), paddle.sum(trg)
K
Kaipeng Deng 已提交
61

62
            paddle.disable_static()
K
Kaipeng Deng 已提交
63

64
            imikolov = Imikolov(mode='train', data_type='SEQ', window_size=2)
K
Kaipeng Deng 已提交
65

66 67 68 69
            for i in range(10):
                src, trg = imikolov[i]
                src = paddle.to_tensor(src)
                trg = paddle.to_tensor(trg)
K
Kaipeng Deng 已提交
70

71 72 73
                model = SimpleNet()
                src, trg = model(src, trg)
                print(src.numpy().shape, trg.numpy().shape)
K
Kaipeng Deng 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

    """

    def __init__(self,
                 data_file=None,
                 data_type='NGRAM',
                 window_size=-1,
                 mode='train',
                 min_word_freq=50,
                 download=True):
        assert data_type.upper() in ['NGRAM', 'SEQ'], \
            "data type should be 'NGRAM', 'SEQ', but got {}".format(data_type)
        self.data_type = data_type.upper()

        assert mode.lower() in ['train', 'test'], \
            "mode should be 'train', 'test', but got {}".format(mode)
        self.mode = mode.lower()

        self.window_size = window_size
        self.min_word_freq = min_word_freq

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically disabled"
            self.data_file = _check_exists_and_download(data_file, URL, MD5,
                                                        'imikolov', download)

        # Build a word dictionary from the corpus
        self.word_idx = self._build_work_dict(min_word_freq)

        # read dataset into memory
        self._load_anno()

    def word_count(self, f, word_freq=None):
        if word_freq is None:
            word_freq = collections.defaultdict(int)

        for l in f:
            for w in l.strip().split():
                word_freq[w] += 1
            word_freq['<s>'] += 1
            word_freq['<e>'] += 1

        return word_freq

    def _build_work_dict(self, cutoff):
        train_filename = './simple-examples/data/ptb.train.txt'
        test_filename = './simple-examples/data/ptb.valid.txt'
        with tarfile.open(self.data_file) as tf:
            trainf = tf.extractfile(train_filename)
            testf = tf.extractfile(test_filename)
            word_freq = self.word_count(testf, self.word_count(trainf))
            if '<unk>' in word_freq:
                # remove <unk> for now, since we will set it as last index
                del word_freq['<unk>']

            word_freq = [
                x for x in six.iteritems(word_freq) if x[1] > self.min_word_freq
            ]

            word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
            words, _ = list(zip(*word_freq_sorted))
            word_idx = dict(list(zip(words, six.moves.range(len(words)))))
            word_idx['<unk>'] = len(words)

        return word_idx

    def _load_anno(self):
        self.data = []
        with tarfile.open(self.data_file) as tf:
            filename = './simple-examples/data/ptb.{}.txt'.format(self.mode)
            f = tf.extractfile(filename)

            UNK = self.word_idx['<unk>']
            for l in f:
                if self.data_type == 'NGRAM':
                    assert self.window_size > -1, 'Invalid gram length'
                    l = ['<s>'] + l.strip().split() + ['<e>']
                    if len(l) >= self.window_size:
                        l = [self.word_idx.get(w, UNK) for w in l]
                        for i in six.moves.range(self.window_size, len(l) + 1):
                            self.data.append(tuple(l[i - self.window_size:i]))
                elif self.data_type == 'SEQ':
                    l = l.strip().split()
                    l = [self.word_idx.get(w, UNK) for w in l]
                    src_seq = [self.word_idx['<s>']] + l
                    trg_seq = l + [self.word_idx['<e>']]
                    if self.window_size > 0 and len(src_seq) > self.window_size:
                        continue
                    self.data.append((src_seq, trg_seq))
                else:
                    assert False, 'Unknow data type'

    def __getitem__(self, idx):
        return tuple([np.array(d) for d in self.data[idx]])

    def __len__(self):
        return len(self.data)