hierarchical_sigmoid_op.h 8.9 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Q
Qiao Longfei 已提交
16

W
weixing02 已提交
17
#include <iostream>
18
#include <iterator>
Q
Qiao Longfei 已提交
19
#include <memory>
J
JiabinYang 已提交
20
#include <set>
21
#include <string>
W
weixing02 已提交
22
#include <vector>
Q
Qiao Longfei 已提交
23

J
JiabinYang 已提交
24
#include "paddle/fluid/framework/mixed_vector.h"
W
weixing02 已提交
25 26 27 28 29
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
J
JiabinYang 已提交
30

Y
Yancey1989 已提交
31 32 33
namespace paddle {
namespace operators {

Y
Yancey1989 已提交
34 35 36
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
Y
Yancey1989 已提交
37
using platform::Transform;
38
using framework::LoDTensor;
Y
Yancey1989 已提交
39

40
static std::vector<int64_t> PathToRows(const LoDTensor& path) {
J
JiabinYang 已提交
41
  std::set<int64_t> rows;
42
  const int64_t* paths = path.data<int64_t>();
J
JiabinYang 已提交
43
  for (int64_t i = 0; i < path.numel(); ++i) {
44
    int64_t row = paths[i];
J
JiabinYang 已提交
45 46
    if (row < 0) {
      continue;
J
JiabinYang 已提交
47
    }
J
JiabinYang 已提交
48
    rows.emplace(row);
J
JiabinYang 已提交
49
  }
J
JiabinYang 已提交
50
  return std::vector<int64_t>(rows.begin(), rows.end());
J
JiabinYang 已提交
51
}
Y
Yancey1989 已提交
52
template <typename DeviceContext, typename T>
Y
Yancey1989 已提交
53 54
class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
 public:
Y
Yancey1989 已提交
55
  void Compute(const framework::ExecutionContext& ctx) const override {
56 57 58 59 60 61 62 63 64 65 66
    auto& in = GET_DATA_SAFELY(ctx.Input<LoDTensor>("X"), "Input", "X",
                               "HierarchicalSigmoid");
    auto& w = GET_DATA_SAFELY(ctx.Input<LoDTensor>("W"), "Input", "W",
                              "HierarchicalSigmoid");
    auto* path = ctx.Input<LoDTensor>("PathTable");
    auto* code = ctx.Input<LoDTensor>("PathCode");
    auto& label = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Label"), "Input",
                                  "Label", "HierarchicalSigmoid");
    auto* bias = ctx.Input<LoDTensor>("Bias");
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* pre_out = ctx.Output<LoDTensor>("PreOut");
Y
Yancey1989 已提交
67
    size_t num_classes = static_cast<size_t>(ctx.Attr<int>("num_classes"));
68 69
    // for remote prefetch

70 71 72 73 74 75
    bool is_custom = false;
    if (path) {
      is_custom = true;
    }
    int64_t code_length =
        path ? path->dims()[1] : math::FindLastSet(num_classes - 1);
J
JiabinYang 已提交
76
    int64_t batch_size = in.dims()[0];
77
    LoDTensor sum;
W
weixing02 已提交
78
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
G
guosheng 已提交
79
    auto* pre_out_data = pre_out->mutable_data<T>(
Y
Yancey1989 已提交
80
        framework::make_ddim({batch_size, code_length}), ctx.GetPlace());
W
weixing02 已提交
81
    auto pre_out_mat = EigenMatrix<T>::From(*pre_out);
G
guosheng 已提交
82 83
    // Not all class(leaf) nodes' path lengths equal code_length, thus init as
    // 0s can avoid out of path's loss.
84
    math::SetConstant<DeviceContext, T> zero;
W
weixing02 已提交
85
    zero(dev_ctx, pre_out, static_cast<T>(0.0));
Y
Yancey1989 已提交
86 87
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    math::RowwiseSum<DeviceContext, T> row_sum;
88 89 90

    std::unique_ptr<math::MatrixBitCodeFunctor<T>> bit_code;
    if (!is_custom) {
91 92
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(
          num_classes, label.template data<int64_t>()));
93
    } else {
94 95
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(
          *path, *code, label.template data<int64_t>()));
96
    }
Y
Yancey1989 已提交
97

Y
Yancey1989 已提交
98 99
    std::vector<int64_t> sum_dims({batch_size, 1UL});
    sum.mutable_data<T>(framework::make_ddim(sum_dims), ctx.GetPlace());
Y
Yancey1989 已提交
100
    auto sum_mat = EigenMatrix<T>::From(sum);
Y
Yancey1989 已提交
101
    out->mutable_data<T>(ctx.GetPlace());
102
    auto out_mat = framework::EigenMatrix<T>::From(*out);
Y
Yancey1989 已提交
103
    if (bias) {
104
      bit_code->Add(*bias, pre_out);
Y
Yancey1989 已提交
105
    }
J
JiabinYang 已提交
106
    bit_code->Mul(pre_out, w, in);
G
guosheng 已提交
107
    // clip to [-40, 40]
Y
Yancey1989 已提交
108 109
    Transform<DeviceContext> trans;
    trans(ctx.template device_context<DeviceContext>(), pre_out_data,
W
weixing02 已提交
110
          pre_out_data + pre_out->numel(), pre_out_data,
Y
Yancey1989 已提交
111
          ClipFunctor<T>(static_cast<T>(-40.0), static_cast<T>(40.0)));
112
    bit_code->Sum(*pre_out, out, static_cast<T>(-1));
G
guosheng 已提交
113
    // use softrelu to calculate cross entropy
Y
Yancey1989 已提交
114
    pre_out_mat.device(place) = (static_cast<T>(1.0) + pre_out_mat.exp()).log();
W
weixing02 已提交
115
    row_sum(dev_ctx, *pre_out, &sum);
116 117 118 119
    // TODO(guosheng): Subtract the out of path's loss, since not all
    // class(leaf) nodes' path lengths equal code_length. But it won't break the
    // gradient check since both have the out of path's loss and will cancel out
    // each other.
Y
Yancey1989 已提交
120
    out_mat.device(place) = sum_mat + out_mat;
Y
Yancey1989 已提交
121
  }
Y
Yancey1989 已提交
122 123
};

Y
Yancey1989 已提交
124
template <typename DeviceContext, typename T>
Y
Yancey1989 已提交
125 126
class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
 public:
Y
Yancey1989 已提交
127
  void Compute(const framework::ExecutionContext& ctx) const override {
128 129 130 131 132 133 134
    auto& in = GET_DATA_SAFELY(ctx.Input<LoDTensor>("X"), "Input", "X",
                               "HierarchicalSigmoidGrad");
    auto& w = GET_DATA_SAFELY(ctx.Input<LoDTensor>("W"), "Input", "W",
                              "HierarchicalSigmoidGrad");
    auto* path = ctx.Input<LoDTensor>("PathTable");
    auto* code = ctx.Input<LoDTensor>("PathCode");
    auto* in_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
J
JiabinYang 已提交
135 136 137
    bool is_sparse = ctx.Attr<bool>("is_sparse");
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
138 139 140 141 142 143 144 145
    auto& label = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Label"), "Input",
                                  "Label", "HierarchicalSigmoidGrad");
    auto& pre_out = GET_DATA_SAFELY(ctx.Input<LoDTensor>("PreOut"), "Input",
                                    "PreOut", "HierarchicalSigmoidGrad");
    auto& out_grad = GET_DATA_SAFELY(
        ctx.Input<LoDTensor>(framework::GradVarName("Out")), "Input",
        framework::GradVarName("Out"), "HierarchicalSigmoidGrad");
    LoDTensor pre_out_grad;
146

J
JiabinYang 已提交
147
    pre_out_grad.mutable_data<T>(pre_out.dims(), ctx.GetPlace());
148 149
    in_grad->mutable_data<T>(ctx.GetPlace());
    zero(dev_ctx, in_grad, static_cast<T>(0.0));
W
weixing02 已提交
150

Y
Yancey1989 已提交
151
    size_t num_classes = static_cast<size_t>(ctx.Attr<int>("num_classes"));
152 153 154 155 156 157 158 159

    bool is_custom = false;
    if (path) {
      is_custom = true;
    }

    std::unique_ptr<math::MatrixBitCodeFunctor<T>> bit_code;
    if (!is_custom) {
160 161
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(
          num_classes, label.template data<int64_t>()));
162
    } else {
163 164
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(
          *path, *code, label.template data<int64_t>()));
165
    }
166

Y
Use mkl  
Yu Yang 已提交
167
    // softrelu derivative
J
JiabinYang 已提交
168

Y
Use mkl  
Yu Yang 已提交
169
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
170

Y
Use mkl  
Yu Yang 已提交
171
    auto* pre_out_grad_data = pre_out_grad.data<T>();
172
    auto* pre_out_data = pre_out.template data<T>();
Y
Use mkl  
Yu Yang 已提交
173 174 175 176 177 178
    auto n = pre_out.numel();
    blas.VEXP(n, pre_out_data, pre_out_grad_data);
    blas.VINV(n, pre_out_grad_data, pre_out_grad_data);
    for (int64_t i = 0; i < n; ++i) {
      pre_out_grad_data[i] = 1.0 - pre_out_grad_data[i];
    }
179
    bit_code->Sub(&pre_out_grad);  // the gradient of clip(w * x + b)
180
    auto* out_grad_data = out_grad.template data<T>();
Y
Use mkl  
Yu Yang 已提交
181 182 183 184 185 186 187

    int64_t dim0 = pre_out_grad.dims()[0];
    int64_t dim1 = pre_out_grad.dims()[1];
    for (int64_t i = 0; i < dim0; ++i) {
      T tmp = out_grad_data[i];
      blas.SCAL(dim1, tmp, pre_out_grad_data + i * dim1);
    }
G
guosheng 已提交
188 189
    // TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
    // be consistent with the clipping in forward.
190
    auto* bias_grad = ctx.Output<LoDTensor>(framework::GradVarName("Bias"));
191 192 193 194 195
    if (bias_grad) {
      bias_grad->mutable_data<T>(ctx.GetPlace());
      zero(dev_ctx, bias_grad, static_cast<T>(0.0));
      bit_code->AddGrad(pre_out_grad, bias_grad);
    }
J
JiabinYang 已提交
196
    if (!is_sparse) {
197
      auto* w_grad = ctx.Output<LoDTensor>(framework::GradVarName("W"));
J
JiabinYang 已提交
198 199
      w_grad->mutable_data<T>(ctx.GetPlace());
      zero(dev_ctx, w_grad, static_cast<T>(0.0));
J
JiabinYang 已提交
200
      bit_code->MulGradWeight(pre_out_grad, w_grad, in);
J
JiabinYang 已提交
201
    } else {
202 203 204
      PADDLE_ENFORCE_NOT_NULL(path,
                              platform::errors::NotFound(
                                  "Custom tree must be set for sparse mode!"));
J
JiabinYang 已提交
205
      framework::Vector<int64_t> real_rows = PathToRows(*path);
J
JiabinYang 已提交
206 207 208
      auto* w_grad =
          ctx.Output<framework::SelectedRows>(framework::GradVarName("W"));
      w_grad->set_rows(real_rows);
209
      // Build a map of id -> row_index to speed up finding the index of one id
J
JiabinYang 已提交
210
      w_grad->set_height(w.dims()[0]);
J
JiabinYang 已提交
211
      auto* w_grad_value = w_grad->mutable_value();
J
JiabinYang 已提交
212
      framework::DDim temp_dim(w.dims());
213
      temp_dim[0] = real_rows.size();
J
JiabinYang 已提交
214 215
      w_grad_value->mutable_data<T>(temp_dim, ctx.GetPlace());
      zero(dev_ctx, w_grad_value, static_cast<T>(0.0));
J
JiabinYang 已提交
216
      bit_code->MulGradWeight(pre_out_grad, w_grad, in);
J
JiabinYang 已提交
217
    }
J
JiabinYang 已提交
218
    bit_code->MulGradError(pre_out_grad, w, in_grad);
Y
Yancey1989 已提交
219
  }
Y
Yancey1989 已提交
220 221 222 223
};

}  // namespace operators
}  // namespace paddle