geo_table_test.cc 4.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <ThreadPool.h>

#include <unistd.h>
#include <string>
#include <thread>  // NOLINT

#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "paddle/fluid/distributed/ps.pb.h"
#include "paddle/fluid/distributed/table/common_dense_table.h"
#include "paddle/fluid/distributed/table/common_sparse_table.h"
#include "paddle/fluid/distributed/table/sparse_geo_table.h"
#include "paddle/fluid/distributed/table/table.h"

namespace paddle {
namespace distributed {

// SparseGeoTable + SSUM
TEST(SparseGeoTable, SSUM) {
  int emb_dim = 10;
  int trainers = 2;

  TableParameter table_config;
  table_config.set_table_class("SparseGeoTable");
  FsClientParameter fs_config;
  Table *table = new SparseGeoTable();
  TableAccessorParameter *accessor_config = table_config.mutable_accessor();
  accessor_config->set_accessor_class("CommMergeAccessor");
  CommonAccessorParameter *common_config = table_config.mutable_common();
  common_config->set_name("sum");
  common_config->set_table_name("ssum_test_table");
  common_config->set_trainer_num(trainers);
  common_config->add_params("Param");
  common_config->add_dims(emb_dim);
  common_config->add_initializers("fill_constant&1.0");

  auto ret = table->initialize(table_config, fs_config);
  ASSERT_EQ(ret, 0);

  // test push_sparse_param, and create params
  std::vector<uint64_t> init_keys = {0, 1, 2, 3, 4};
  std::vector<float> init_values;
  for (size_t i = 0; i < init_keys.size() * emb_dim; i++) {
    init_values.push_back(0.0);
  }
  table->push_sparse_param(init_keys.data(), init_values.data(),
                           init_keys.size());
  std::vector<float> pull_values(init_values.size());
  table->pull_sparse(pull_values.data(), init_keys.data(), init_keys.size());
  for (size_t i = 0; i < init_keys.size() * emb_dim; i++) {
T
tangwei12 已提交
65
    ASSERT_TRUE(abs(pull_values[i] - init_values[i]) < 1e-5);
T
tangwei12 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  }

  std::vector<std::vector<uint64_t>> trainer_keys;
  std::vector<std::vector<float>> trainer_values;
  trainer_keys.resize(trainers);
  trainer_values.resize(trainers);
  float start = 0.0;
  for (int i = 0; i < trainers; i++) {
    trainer_keys[i] = init_keys;
    for (size_t j = 0; j < trainer_keys[i].size(); j++) {
      auto id = trainer_keys[i][j];
      for (int k = 0; k < emb_dim; k++) {
        trainer_values[i].push_back(start);
        pull_values[id * emb_dim + k] += start;
        start += 0.1;
      }
    }
  }

  std::shared_ptr<::ThreadPool> pool_ =
      std::make_shared<::ThreadPool>(trainers);
  std::vector<std::future<void>> task_status;
  for (int i = 0; i < trainers; i++) {
    auto &push_keys = trainer_keys[i];
    auto &push_values = trainer_values[i];
    auto task = [table, &push_keys, &push_values] {
      table->push_sparse(push_keys.data(), push_values.data(),
                         push_keys.size());
    };
    task_status.push_back(pool_->enqueue(std::move(task)));
  }
  for (auto &status : task_status) {
    status.wait();
  }

  std::vector<std::vector<uint64_t>> geo_pull_ids;
  std::vector<std::vector<float>> geo_pull_values;
  geo_pull_ids.resize(trainers);
  geo_pull_values.resize(trainers);
  for (int i = 0; i < trainers; i++) {
    table->pull_geo_param(i, &geo_pull_values[i], &geo_pull_ids[i]);
    ASSERT_EQ(geo_pull_values[i].size(), geo_pull_ids[i].size() * emb_dim);
    for (size_t j = 0; j < geo_pull_ids[i].size(); ++j) {
      auto id = geo_pull_ids[i][j];
      for (int k = 0; k < emb_dim; k++) {
        ASSERT_TRUE(abs(geo_pull_values[i][j * emb_dim + k] -
                        pull_values[id * emb_dim + k]) < 1e-5);
      }
    }
  }
}

}  // namespace distributed
}  // namespace paddle