set_value_op.h 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <string>
#include <vector>

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/assign_value_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
26
#include "paddle/fluid/operators/slice_utils.h"
27
#include "paddle/fluid/operators/utils.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

inline std::string GetValueName(framework::proto::VarType::Type data_type) {
  std::string value_name;
  switch (data_type) {
    case framework::proto::VarType::INT32:
      value_name = "int32_values";
      break;
    case framework::proto::VarType::INT64:
      value_name = "int64_values";
      break;
    case framework::proto::VarType::FP32:
      value_name = "fp32_values";
      break;
47 48 49
    case framework::proto::VarType::FP64:
      value_name = "fp64_values";
      break;
50 51 52
    case framework::proto::VarType::BOOL:
      value_name = "bool_values";
      break;
53

54 55 56 57 58 59 60 61 62
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type(code %d) for SetValue operator, only "
          "supports bool, int32, float32 and int64.",
          data_type));
  }
  return value_name;
}

Z
zyfncg 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
// check whether the tensor with dimension of second can assign to the
// tensor with dimension of first
inline void CheckIsDimsMatch(const framework::DDim first,
                             const framework::DDim second) {
  int ignore_axis1 = 0, ignore_axis2 = 0;
  for (; ignore_axis1 < first.size(); ++ignore_axis1) {
    if (first[ignore_axis1] != 1) {
      break;
    }
  }
  for (; ignore_axis2 < second.size(); ++ignore_axis2) {
    if (second[ignore_axis2] != 1) {
      break;
    }
  }

  if (second.size() == ignore_axis2) {
    // second tensor has only one value
    return;
  }

  if (first.size() - ignore_axis1 >= second.size() - ignore_axis2) {
    auto idx1 = first.size() - 1;
    auto idx2 = second.size() - 1;
    bool is_match = true;
    for (; idx2 >= ignore_axis2; idx2--) {
      if (first[idx1--] != second[idx2] && second[idx2] != 1) {
        is_match = false;
        break;
      }
    }
    if (is_match) {
      return;
    }
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "The shape of tensor assigned value must match the shape "
      "of target shape: %d, but now shape is %d.",
      second.to_str(), first.to_str()));
}

104 105 106 107
template <typename DeviceContext, typename T>
class SetValueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
108
    const int rank = ctx.Input<framework::LoDTensor>("Input")->dims().size();
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    // TODO(liym27): A more elegent code to do this. C++ has to make template
    //  integer as constant, but we had better have alternative writing in the
    //  future.
    switch (rank) {
      case 1:
        SetValueCompute<1>(ctx);
        break;
      case 2:
        SetValueCompute<2>(ctx);
        break;
      case 3:
        SetValueCompute<3>(ctx);
        break;
      case 4:
        SetValueCompute<4>(ctx);
        break;
      case 5:
        SetValueCompute<5>(ctx);
        break;
      case 6:
        SetValueCompute<6>(ctx);
        break;
132 133 134
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of input should be less than 7, but received %d.", rank));
135 136 137 138 139 140 141
    }
  }

 private:
  template <size_t D>
  void SetValueCompute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<framework::LoDTensor>("Input");
142
    auto* value_tensor = ctx.Input<framework::LoDTensor>("ValueTensor");
143 144
    auto* out = ctx.Output<framework::LoDTensor>("Out");

145 146 147 148 149 150
    auto starts_tensor_list =
        ctx.MultiInput<framework::Tensor>("StartsTensorList");
    auto ends_tensor_list = ctx.MultiInput<framework::Tensor>("EndsTensorList");
    auto steps_tensor_list =
        ctx.MultiInput<framework::Tensor>("StepsTensorList");

151 152 153
    auto axes = ctx.Attr<std::vector<int64_t>>("axes");
    auto starts = ctx.Attr<std::vector<int64_t>>("starts");
    auto ends = ctx.Attr<std::vector<int64_t>>("ends");
154
    auto steps = ctx.Attr<std::vector<int64_t>>("steps");
155
    auto shape = ctx.Attr<std::vector<int64_t>>("shape");
156
    auto decrease_axes = ctx.Attr<std::vector<int64_t>>("decrease_axes");
Z
zyfncg 已提交
157
    auto none_axes = ctx.Attr<std::vector<int64_t>>("none_axes");
158

159
    auto dtype = in->type();
160 161 162 163 164 165 166 167 168
    if (!starts_tensor_list.empty()) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }
    if (!ends_tensor_list.empty()) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }
    if (!steps_tensor_list.empty()) {
      steps = GetDataFromTensorList<int64_t>(steps_tensor_list);
    }
169 170

    auto in_dims = in->dims();
171 172
    CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends, &steps);
    auto slice_dims = GetSliceDims(in_dims, axes, starts, ends, &steps);
173
    auto decrease_slice_dims = GetDecreasedDims(slice_dims, decrease_axes);
174

Z
zyfncg 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    auto slice_dims_for_assign = decrease_slice_dims;
    if (!none_axes.empty()) {
      std::vector<int64_t> slice_dims_with_none;

      size_t none_axes_cur = 0, decrease_axes_cur = 0;
      for (int i = 0; i < slice_dims.size(); ++i) {
        while (none_axes_cur < none_axes.size() &&
               none_axes[none_axes_cur] <= i) {
          slice_dims_with_none.push_back(1);
          none_axes_cur++;
        }
        if (decrease_axes_cur < decrease_axes.size() &&
            decrease_axes[decrease_axes_cur] == i) {
          decrease_axes_cur++;
        } else {
          slice_dims_with_none.push_back(slice_dims[i]);
        }
      }
      while (none_axes_cur < none_axes.size()) {
        slice_dims_with_none.push_back(1);
        none_axes_cur++;
      }

      slice_dims_for_assign = framework::make_ddim(slice_dims_with_none);
    }

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    auto place = ctx.GetPlace();
    auto& eigen_place =
        *ctx.template device_context<DeviceContext>().eigen_device();

    // Here copy data from input to avoid data loss at PE and Graph level.
    // TODO(liym27): Speed up in the future version.
    // - Q: Why don't call ShareDataWith to speed up?
    // - A: Because it's not supported to ShareDataWith on OP's input and output
    // https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP
    // - Q: Why don't delete Input, after all, the input and output are the same
    // Tensor at program level?
    // - A: If deleting Input, the graph will be complex, such as there will
    // be two ops points to the output in graph: op1 -> output <- set_value.
    // In this case, we have to find a way to handle the running order of
    // set_value is what we want.
    TensorCopy(*in, place, out);

218 219 220
    Tensor slice_tensor(dtype), pad_tensor(dtype);
    slice_tensor.mutable_data<T>(slice_dims, place);
    pad_tensor.mutable_data<T>(in_dims, place);
221

222
    auto pad_e = framework::EigenTensor<T, D>::From(pad_tensor, in_dims);
223
    auto out_e = framework::EigenTensor<T, D>::From(*out);
224
    auto slice_e = framework::EigenTensor<T, D>::From(slice_tensor, slice_dims);
225 226

    // Step 1: Set the value of out at `_index` to zero
227 228 229 230 231
    slice_e.device(eigen_place) = slice_e.constant(T(0));

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
232 233

    for (size_t i = 0; i < D; ++i) {
234 235 236
      starts_indices[i] = 0;
      ends_indices[i] = slice_dims[i];
      strides_indices[i] = 1;
237
    }
238 239 240 241 242
    for (size_t i = 0; i < axes.size(); i++) {
      int axis_index = axes[i];
      starts_indices[axis_index] = starts[i];
      ends_indices[axis_index] = ends[i];
      strides_indices[axis_index] = steps[i];
243 244
    }

245 246
    out_e.stridedSlice(starts_indices, ends_indices, strides_indices)
        .device(eigen_place) = slice_e;
247 248 249

    // Step 2: Set a tensor with the same shape as out tensor. And its data at
    // '_index' is the same as value_tensor, and data out of '_index' to zero
250

251
    // - Step 2.1 Set slice tensor with value
252 253 254 255 256 257 258 259 260 261 262 263 264

    // NOTE(liym27): [ Why resize slice_tensor here? ]
    // A: When do broadcasting on slice_tensor and value_tensor, the shape of
    // slice_tensor should be decreased dims.
    // e.g.
    //  x[:,0] = value_tensor
    // x's shape = [3, 4], value_tensor's shape = [3]
    // We get slice_dims = [3, 1],  decrease_slice_dims = [3]
    // If do broadcasting on Tensor with shape [3, 1] and [3], the result's
    // shape is [3, 3], which cross the border;
    // If do broadcasting on Tensor with shape [3] and [3], the result's shape
    // is [3], which is right.

Z
zyfncg 已提交
265
    slice_tensor.Resize(slice_dims_for_assign);
266
    if (value_tensor != nullptr) {
Z
zyfncg 已提交
267
      CheckIsDimsMatch(slice_dims_for_assign, value_tensor->dims());
268 269
      // ElementwiseComputeEx can do broadcasting
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
270
          ctx, &slice_tensor, value_tensor, -1, SubFunctor<T>(), &slice_tensor);
271 272
    } else {
      Tensor value_t(dtype);
273
      auto value_dims = framework::make_ddim(shape);
Z
zyfncg 已提交
274 275
      CheckIsDimsMatch(slice_dims_for_assign, value_dims);

276 277 278 279 280
      value_t.mutable_data<T>(value_dims, place);
      auto value_name = GetValueName(dtype);
      CopyVecotorToTensor<T>(value_name.c_str(), &value_t, ctx);
      value_t.Resize(value_dims);
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
281
          ctx, &slice_tensor, &value_t, -1, SubFunctor<T>(), &slice_tensor);
282
    }
283
    slice_tensor.Resize(slice_dims);
284

285 286 287 288
    // - Step 2.2 Pad slice tensor with 0
    pad_e.device(eigen_place) = pad_e.constant(T(0));
    pad_e.stridedSlice(starts_indices, ends_indices, strides_indices)
        .device(eigen_place) = slice_e;
289 290 291 292 293 294 295 296

    // Step 3: Set out tensor with value_tensor
    out_e.device(eigen_place) = out_e - pad_e;
  }
};

}  // namespace operators
}  // namespace paddle